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1. INTRODUCTION

This note is devoted to some important definitions and results on computable analysis and
ergodic theory. Specifically, for the aspect of computable analysis, we extend the results from
the Euclidean space version to the general computable metric space version. For the aspect of
ergodic theory, we summarize Rokhlin’s formula at the end of this paper.

2. NOTATION

Let C be the complex plane and C be the Riemann sphere. Let i denote the imaginary unit
in the complex plane C. Define the chordal metric o on C as follows: o(z,w) = 22w

~ VIR

2 for all z € C. Let S? denote an oriented

\/ 1+]|z]2

topological 2-sphere. We use N to denote the set of integers greater than or equal to 1 and
N* = Jpen N¥. We write Ng := {0} UN and N}, := {0} UN*. We denote by QT the set of all
positive rational numbers and by R the set of all positive real numbers. The symbol log denotes
the natural logarithm. For z € R, we define |z] as the greatest integer < z, [z] the smallest
integer > z, and x+ := max{x, 0}. The cardinality of a set A is denoted by card A.

Consider amap f: X — X on aset X. We write f for the n-th iterate of f, and f~" = (f*)~!,
for each n € N. We set f° := idx, the identity map on X. For a real-valued function ¢: X — R,
we write Spo(z) = Sho(z) = Z?;& ¢(f7(x)) for z € X and n € Ng. We omit the superscript f
when the map f is clear from the context. When n = 0, by definition Sy¢ = 0.

Let (X, d) be a metric space. We denote by B(X) the o-algebra of all Borel subsets of X. For
each subset Y C X, we denote the diameter of Y by diamgY = sup{d(z,y) : =,y € Y}, the
interior of Y by intY, and the characteristic function of Y by 1y which maps each x € Y to
1 € R and vanishes elsewhere.

for all z, w € C, and o(00,2) = o(z,00) =

1
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For all r € R and = € X, we denote the open (resp. closed) ball of radius r centered at z by
By(z,7) :={y € X :d(z,y) <} (resp. By(z,r) = {y € X : d(x,y) < r}). For all r € R and non-
empty set K C X, we define d(z, K) := infyex d(x,y), and Bg(K,r) :={z € X : d(z,K) < r}.
We often omit the metric d in the subscript when it is clear from the context.

For a compact metric space (X, d) and a continuous map g: X — X, we denote by C(X) the
space of continuous functions from X to R, by M(X) (resp. M(X,g)) the set of finite signed
Borel measures (resp. g-invariant Borel probability measures) on X, and P(X) the set of Borel
probability measures on X. Moreover, for each Borel subset C' € B(X), P(X;C) denotes the
set {p € P(X) : u(C) = 1}. By the Riesz representation theorem, we can identify the dual of
C(X) with the space M(X). For u € M(X), we use ||u|| to denote the total variation norm of
w, supp p the support of p, and

) = [

for each p-integrable Borel function v on X. If we do not specify otherwise, we equip C(X)
with the uniform norm || - [[¢(x) = || - ||, and equip M(X), P(X), and M(X, g) with the weak*
topology.

The space of real-valued Holder continuous functions with an exponent o € (0, 1] on a compact
metric space (X, d) is denoted as C*%(X,d). For each ¢ € C%%(X,d),

|9la,a = sup{|¢(z) — d(y)|/d(z,y)* 1z, y € X, x # y}. (2.1)

For a complete separable metric space (X,d), we recall the Wasserstein—-Kantorovich metric
W, on P(X) given by

Wa(p,v) = sup{|{u, f) — (v, f)| : f € C¥U(X,d), [ fla < 1}. (2.2)

Note that for Borel probability measures in P(X), the convergence in Wy is equivalent to the
convergence in the weak* topology (see e.g., [Vi09, Corollary 6.13]).

3. COMPUTABLE ANALYSIS

We recall fundamental notions and results from recursion theory and computable analysisﬂ
We present, in order, definitions and results concerning the computability of real numbers, com-
putable structures on metric spaces, computability of open sets, functions, compact sets, and
probability measures.

3.1. Computability over the reals. We begin by reviewing basic notations and concepts from
classical recursion theory; for an introduction, see e.g. [Bri94, Chapter 3].

Definition 3.1 (Effective enumeration and recursively enumerable set). Let S C N* be
a nonempty set. An effective enumeration of S is a sequence {x;};eny with S = {z; : i € N} such
that there exists an algorithm that, for each ¢ € N, upon input ¢, outputs z;.

Moreover, a set I C N* is said to be a recursively enumerable setE| if I = () or there exists an
effective enumeration of I.

For brevity, the symbol I denotes a nonempty recursively enumerable set throughout this
subsection.

Note that N*, for & € N, and N* are all recursively enumerable sets by Definition We then
define partial recursive functions and recursive functions.

LOur notion of algorithm is consistent with Type-2 machines defined in [We00, Definition 2.1.1].
2We emphasize that recursively enumerable sets in this article are subsets of N*.



NOTES ON COMPUTABILITY AND ERGODIC THEORY 3

Definition 3.2 (Partial recursive and recursive function). Let {i,},en be an effective
enumeration of I. We say that f: I — N is partial recursive if there exists an algorithm that,
for each n € N, on input n, outputs f(i,) if f(i,) € N*, and runs forever otherwise, namely, if
f(in) = 0. We say that f: I — N is recursive if f is a partial recursive function with f(I) C N*.

We now define the computability of real numbers.

Definition 3.3 (Computable real number). A real number z is called computable if there exist
three recursive functions f: N — N, g: N — N, and h: N — N such that ‘(—1)h(")f(n)/g(n)—x| <
27" for allt € I and n € N.

Let {z;}icr be a sequence of real numbers. We say that {x;};cr is a sequence of uniformly
computable real numbers if there exist three recursive functions f: Nx I — N, g: Nx I — N,
and h: N x I — N such that |(—1)h(”’i)f(n,i)/g(n, i) — x| <2 " foralli€landneN.

Clearly, € R is computable if and only if {x;};cn defined by z; := z for all ¢ € N is uniformly
computable. For analogous concepts in the sequel, we will define the uniform sequence version
and regard the individual case as the special case of constant sequences.

3.2. Computable metric spaces.

Definition 3.4 (Computable metric space). A computable metric space is a triple (X, p, S)
satisfying that
(i) (X,p) is a separable metric space,
(ii) S = {sp}nen forms a countable dense subset {s, : n € N} of X, and
(iil) {p(sm>5n)}mn)enz is a sequence of uniformly computable real numbers.

The points in S are called ideal. Since N? is recursively enumerable, the collection B := {B(s;,m/n) :
i, m, n € N} can be enumerated as {B;};cy satisfying the following: there exists an algorithm
that, for each [ € N, upon input [, outputs i, m, n € N with B; = B(s;,m/n). We call the
elements in B ideal balls and such an enumeration of B an effective enumeration of ideal balls in

(X, p, S).
We then define the computability of points in a computable metric space.

Definition 3.5 (Computable point). Let (X, p, S) be a computable metric space with S =
{si}ien, and {x;};cr be a sequence of points in X. Then {z;}cs is called uniformly computable
(in (X, p, 8)) if there exists a recursive function f: N x I — N such that p(sf(m-), x;) < 27" for
all n € N and i € I. Moreover, a point = in X is computable (in (X, p, S)) if {x;}ien defined by
x; = x for all ¢ € N is uniformly computable.

We now specify the computable structure on R. Let Sg = {¢n}nen be the enumeration of
Q induced by an effective enumeration of N3 via the mapping (a,b,c) + (—1)¢a/b. Note that
{dr(gm; @n) } (m,n)en2 18 a sequence of uniformly computable real numbers, where dg is the Eu-
clidean metric. Then the triple (R, dr, S@) forms a computable metric space according to Def-
inition A similar construction provides a computable structure for R™. In this article, we
fix these as the standard computability structures on R and R*. It is clear that under these
structures, Definitions [3.3| and are equivalent for the computability of real numbers. That is,
a sequence of reals is uniformly computable in one sense if and only if it is in the other.

We also consider a weaker notion of computability over R that leverages its natural ordered
structure.

Definition 3.6 (Semi-computable real number). Let {z;};c; be a sequence of real num-
bers. We say that {z;}icr is uniformly lower (resp. upper) semi-computable if there exist three
recursive functions f: N x I — N, g: Nx I — N, and h: N x I — N such that for each
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i € I, {(=1)hmD f(n, i)/g(n,i)}neN is non-decreasing (resp. non-increasing) and converges to
x; as n — +oo. Moreover, a real number x is called lower (resp. upper) semi-computable if
the sequence {x;};cy defined by x; = z for each i € N is uniformly lower (resp. upper) semi-
computable.

3.3. Lower semi-computable open sets. We define an effective version of open sets and collect
some relevant results.

Let (X, p, S) be a computable metric space. Let B be the set of ideal balls, and {B;};en be
an effective enumeration of ideal balls in (X, p, §). We define the set By := BU {0} of extended
ideal balls and an enumeration {D;};en of By such that D1 = () and D; = B;_; for each integer
[ > 2. We call such an enumeration an effective enumeration of extended ideal balls in (X, p, S).

Definition 3.7 (Lower semi-computable open set). Let (X, p, S) be a computable metric
space, and {D; };en be an effective enumeration of extended ideal balls. Then a sequence {U; }ier
of open sets in X is said to be uniformly lower semi-computable open (in (X, p, S)) if there exists
a recursive function f: N x I — N such that U; = J,,cy D(n,i) for each i € I. Moreover, an open
set U C X is called lower semi-computable open (in (X, p, S)) if the sequence {U;};cn defined
by U; = U for ¢ € N is uniformly lower semi-computable open.

The above definition of a lower semi-computable open set differs slightly from the ones in
[BBRY11], Definition 3.4] and [BRY14] Definition 2.4]. In our definition, we use extended ideal
balls, which include the empty set. Moreover, the term recursively open set in the literature
(e.g. [GHR1I, Subsection 2.2 and Definition 2.4] and [HR09, Subsection 3.3]) is equivalent to the
notion of lower semi-computable open set defined above.

Proposition 3.8. Let (X, p, S) be a computable metric space, and {By}nen be an effective
enumeration of ideal balls in (X, p, S). Assume that U; is an open subset in X for each i € I.
Then {U;}ier is uniformly lower semi-computable open if and only if there exists a recursively
enumerable set E C N x I such that U; = J{By : (n,t) € E} for eachi € I.

The above result is classical in recursion theory. Here is a brief proof.

Proof of Proposition[3.8. Recall that D; = () and D; = B;_ for each | € N. First, we assume
that {U;}ier is a sequence of uniformly lower semi-computable open sets. Then by Definition
there exists a recursive function f: N x I — N such that U; = (J,cny Df(n,) for each i € I.
Now we define £ := {(f(n,i) —1,i) e Nx I :n €N, i€ I, f(n,i) > 2}. Thus, U; = J{Bx :
n € N and (n,i) € E} for each ¢ € I. By Definition N x I is a recursively enumerable set,
namely, there exists an effective enumeration {(nm,,im) tmen of N x I. Now we define a function
m: N — N by m(k) = min{m € N:m > m(k — 1), f(nm,im) = 2}. Then since f is a recursive
function, we obtain that m is a recursive function. Thus, by Definition {(Mm(k)» im(r)) Fren
is an effective enumeration of F, hence, F is a recursively enumerable set.

Next, we assume that £ C N x [ is a recursively enumerable set such that U; = U{Bn 'n €
N and (n,i) € E } for each ¢ € I. We split the proof into two cases depending on whether E = ().

Case 1. E # 0.

In this case, there exists an effective enumeration {(ng, ix) }ren of the set E, where nx € N and
i € I for each k € N. Then we define a function f: N x I — Ny by f(n,i) := 1 + ng, where k
is the minimal integer k& such that card{m € N:1 < m < k and 4,, =i} = n for all n € N and
1 € I. By Definition the function f is recursive. Moreover, by the definition of the function
fo Ui =U{Bn :n € Nand (n,i) € E} = U{Dns1 :n € Nand (n,i) € E} = U,enDyni)-
Thus, by Definition {Ui}ier is a sequence of uniformly lower semi-computable open sets.
Case 2. E = ).
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In this case, U; = ) for each ¢ € I. We define a function f: N x I — Ny by f(n,i) = dirOo for
all n € N and i € I. By Definition f is recursive. Therefore, by Definition {Uitier is a
sequence of uniformly lower semi-computable open sets. [l

Note that we can algorithmically decide whether s € B for each ideal point s € S and each
extended ideal ball B € By. The following result then follows immediately from Definition

Proposition 3.9. Let (X, p, S) be a computable metric space with S = {s,}nen. Assume that
{Ui}ier is uniformly lower semi-computable open. Then there exists a recursively enumerable set
E C N x I such that {sy : (n,i) € E;} = {sp : n € N} NU;, where E; = {(n,i) € E:n € N} for
each i € 1.

Proof. Note that by Definition (ii) and (iii), we can decide whether s € B for each s € S and
B € B. Then since { B, } men is an effective enumeration of the set B of ideal balls, there exists a
recursively enumerable set F© C N2 such that {s, : (n,m) € F} = {s, : n € N}NB,, for each m €
N. Since {U; };er is a sequence of uniformly lower semi-computable open sets, by Proposition
there exists a recursively enumerable set G C N x [ such that U; = |J{By, : (m,i) € G} for each
i € I. Define E :={(n,i) e Nx I:(n,m) € F, (m,i) € G}. Then by the definitions of F' and G,
we have that for each i € I, {s, : (n,i) € E} = U ecisn i n € N}NBy = {s, :n e N}NU;. O

The following two results are two classical results in computable analysis which both follow
immediately from Definitions and

Proposition 3.10. Let (X, p, S) be a computable metric space. Assume that H and L are two
nonempty recursively enumerable sets with L C I x H, and that {U; p} @ nyer, is uniformly lower
semi-computable open. Then {U{Uip : (i,h) € Lp}}hen is uniformly lower semi-computable
open, where Ly, .= {(i,h) € L :i € I} for each h € H. In particular, if {U;}icr is uniformly lower
semi-computable open, then \J,c; Ui is lower semi-computable open.

Proof. Since {U; x}(ix)er is a sequence of uniformly lower semi-computable open sets, by Defi-
nition there exists a recursively enumerable set £ C N x L such that U;, = U{B, : n €
N, (n,i,k) € E} for each (i,k) € L. Define F := {(n,k) e Nx K :i € I, (n,i,k) € E}. Then
F is also a recursively enumerable set. Thus, we obtain that (J{U;x : i € I, (i,k) € L} =
UH{Bn:i€l,neN,(nik) e E} ={Br:n €N, (nk)e F} for each k € K. Therefore,
{U{Uik i €1, (i,k) € L}}rek is a sequence of uniformly lower semi-computable open sets.

In particular, we assume that {U;};cs is a sequence of uniformly lower semi-computable open
sets. Let V; , := U; for all i € I and n € N. Then {Vi,n}(i,n)GIXN is a sequence of uniformly lower
semi-computable open sets. Thus, by previous result, we obtain that {{J{Vi., : i € I}}nen is a
sequence of uniformly lower semi-computable open sets. Note that (J{Vi : i € I} = {J;c; U; for
each n € N. Then by Definition Uier Ui is a lower semi-computable open set.

Proposition 3.11. Let (X, p, S) be a computable metric space. Assume that {r;}icr is a se-
quence of uniformly lower semi-computable real numbers and {xz;}ics is uniformly computable in
(X, p, S). Then {B(zi,7i)}ier is uniformly lower semi-computable open.

Proof. Since {r;}icr be a sequence of uniformly lower semi-computable real numbers, by Defi-
nition (ii) and Definition there exists a sequence of uniformly computable real numbers
{rn,i}(mi)enxr such that {r,;}nen is non-decreasing and converges to r; as n converges to +oo
for each ¢ € N. Since {z;};cr is a sequence of uniformly computable points, by Definition
there exists a recursive function f: N x I — N such that p(sf(mi),xi) < 27™ for all m € N and
1 € I. Thus, we obtain that for each i € I,

Bairi) = | B(spmari—27™) = U B(ssmi»mmi—27").
meN (m,n)eN?
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Since f: N x I — N is a recursive function, by the uniform computability of the sequence
{7n.i} (n,i)enx1, we have that {B(sf(m,i)7 Tng—27™)} ) TXN? is a sequence of uniformly lower
semi-computable open sets. Thus, by Proposition {B(x;, i) }ier is a sequence of uniformly
lower semi-computable open sets. O

3.4. Computability of functions. We begin with the definition of oracles for points.

Definition 3.12 (Oracle). Let (X, p, S) be a computable metric space with S = {s; }ien, and
x € X. We say that a function 7: N — N is an oracle for x if p(sT(n),:p) < 27" for each n € N.

Proposition 3.13. Let (X, p, S) be a computable metric space. Suppose that {in}nen is an
effective enumeration of a non-empty recursively enumerable set I, and {U;}icr is a sequence of
uniformly lower semi-computable open sets. Then there exists an algorithm that for all x € X,
n € N, and oracle T for x, on input n € N and the oracle T: N — N, halts if and only if x € U;,,.

Proof. Since {U,};c is a sequence of uniformly lower semi-computable open sets, by Deﬁnition
there exists a recursive function f: N x I — N such that U; = ey Dy(x,i) for each i € I. Thus,
by the definition of { Dy, }men and Definition there exists an algorithm Ay(, -) that on input
k€ Nand i€ I, outputs a, b € N, and m € Ny such that Dy, ;) = B(sa, m/b).

By Definition for each x € X and each oracle 7: N — N, x € U;, if and only if
B(sT(t),2*t) C Dj(r,i,) for some k € N. With the algorithm Ay, we can compute the cen-
ters and radii of these ideal balls. Thus, it is not hard to construct the algorithm that for all
x € X, n €N, and oracle 7 for x, on input n € N and the oracle 7: N — N, halts if and only if
T € Uin~ O

With the above definition, computable functions can be defined as follows.

Definition 3.14 (Computable function). Let (X, p, S) and (X', p/, 8’) be computable metric
spaces with & = {s,}neny and 8" = {8, }nen. Assume that {iy,}nen is an effective enumeration
of I, and C; C X for each i € I. Then a sequence {f;}ics of functions f;: X — X' is called a
sequence of uniformly computable functions with respect to {C;}icr if there exists an algorithm
that, for all I, n € N, x € C;,, and oracle 7 for x, on input [, n, and 7, outputs m € N with
o' (s, fi, (2)) < 271, We often omit the phrase “with respect to {C;}ic;” when C; = X for all
i € I. Moreover, a function f: X — X’ is said to be a computable function on C if {f;}ien,
defined by f; .= f for all ¢ € N, is a sequence of uniformly computable functions with respect to
{C;}ien defined by C; := C for all i € N. We often omit the phrase “with respect to C” when
C=X.

Computable functions serve as an effective version of continuous functions. The following result
provides examples of computable functions (see e.g. [We00, Examples 4.3.3 and 4.3.13.5]).

Example 3.15. The exponential function exp: R — R and the logarithmic function log: R™ — R
are computable functions.

We recall the following classical characterization of computable functions (cf. [RY2Ial, Propo-
sition 5.2.14] and [BBRY11), Proposition 3.6]).
Before Proposition [3.17, an important notion will be introduced below which is useful in the

proof of Propositions and

Definition 3.16. Let (X, p, S) be a computable metric space. For each ¢ € N, we say that a
sequence {p;}7_; of integers is admissible if p(spi, spiﬂ) < 271 for each integer 1 < i < ¢ — 1.
Fix an effective enumeration { P, },cn of all admissible sequences. Moreover, for each admissible
sequence P = {p;}{_,, we can define a corresponding function ¢p: N — N as follows:

' if 1 <1< g .
op(i) = bi 1 , ST for each i € N,
Pq ifi>q+1
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Indeed, given a computable metric space (X, p, S), by Deﬁnition (iii), we can check whether
a given sequence of finitely many integers is admissible. Hence, by enumerating all sequences of
finite integers, it is not difficult to obtain an effective enumeration {P,},en of all admissible
sequences. Moreover, for each admissible sequence P, by Definition pp is an oracle for
sp, € X, where p, is the last integer of the admissible sequence P.

Proposition 3.17. Let (X, p, S) and (X', p/, 8") be computable metric spaces. Suppose { B}, }nen
is an effective enumeration of ideal balls in (X', p/, 8'). Given f;: X — X' and C; C X for each
1 € 1, the following statements are equivalent:

(i) The sequence {fi}icr is a sequence of uniformly computable functions with respect to
{Ci}ier

ii) There exists a sequence {Un i} m.nenxs of uniformly lower semi-computable open sets in

’ ( ’ )E

(X, p, S) such that f7(BL)NC; = U,;NC; for alli € I andn € N.

iii) For each nonempty recursively enumerable set K and each sequence {V/ of uniformly

kJkeK

lower semi-computable open sets, there erists a sequence {Wy i}wiverxxr of uniformly
lower semi-computable open sets in (X, p, S) such that f;l (Vk’) NC; = Wi NC; for all
ke Kandiel.

Proof. Write S = {sp}tneny and &’ = {s),}nen. Let {in}nen be an effective enumeration of I.
Since { B, }nen is an effective enumeration of ideal balls, by Definition {B] }nen is a sequence
of uniformly lower semi-computable open sets. Hence, it follows from Proposition that
statement (ii) is equivalent to statement (iii).

Next, we prove that statement (ii) implies statement (i). Now we design an algorithm A, (-, -, -)
that for all [, n € N, x € C},, and oracle 7: N — N for z, on input [, n € N, and the oracle 7,
outputs m € N satisfying that p/(s),, fi, (z)) < 27! ie., x € fizl (B (sh:271)).

Indeed, by Definition (i), 8" = {s),}nen is dense in X. Thus, for all [, n € N, z € C;,,
there exists corresponding m € N with z € f;l(Bp/ (s/0,27")). Note that {B,(s},,27")}

m?

I,m)eN?
is a sequence of ideal balls. Hence, it follows from statement (ii) that there exists a se(que)znce
{Vim.i}(t,mi)en2x 1 of uniformly lower semi-computable open sets such that it (By (sh,271)) N
Ci = VimiNC;foralll,m € N, and 7 € I. Hence, for allt € I, [, m € N, and z € C;, we
obtain that z € fi_l(Bp/ (34,1,2*1)) if and only if z € Vj,, ;. Moreover, since {V m.i}m.ijenzxr
is uniformly lower semi-computable open, it follows from Proposition that we can construct
an algorithm that, for all [, m, n € N, x € C; , and oracle 7: N — N for z, on input [, m, n € N
and the oracle 7, halts if and only if z € V ,,, ;.. Thus, we establish that {f;},cs is a sequence of
uniformly computable functions with respect to {C;}icr.

Finally, we establish that statement (i) implies statement (ii). Suppose that {f;}ics is a
sequence of uniformly computable functions with respect to {C;};c;. We demonstrate that
there exists a sequence {W,, ;}(n,ijenxs of uniformly lower semi-computable open sets such that
N BYNC =W, NC; foralln € Nand i € 1.

Since {f;}ier is a sequence of uniformly computable functions with respect to {C;}icr, by
Definition there exists an algorithm M(-,-, ) satisfying that for all m, [ € N and x € C;, ,
and oracle 7: N — N for x, M(m,l,7) outputs n € N satisfying that p/(s),, f;,. (z)) < 27!, Let
{(a@n,bn)}nen be an effective enumeration of N2. Now we design an algorithm M’(-,-) that, for
all m, n € N, on input m, n € N, outputs a sequence {c;}+cn of integers and a sequence {r}en
of positive rational numbers with fi;l(B;) N Ci,, = (Uren Bo(5er,71)) N Ci,.-

Begin

(i) Read in the integers m and n.
(ii) Set v and ¢ both to be 1, and flag; = 0 for each i € N.
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(iii)) While v > 1 do
(1) It
(A) flag, =0,
(B) the algorithm M (m, by, © pav) outputs n, € N satisfying that

By(s), ,27") C B,

(the algorithm M (m, by, @ pav) terminates after finitely many steps, and hence
the oracle pp, is only quired up to some finite precision 27*v),
then
(a) the algorithm M’(m,n) outputs ¢; = ¢p,, (w,) and ry = 27",
(b) set flag, to be 1, v to be 0, and ¢ to be t + 1.
(2) Set v to be v+ 1.

End

Finally, by Proposition it suffices to show that fz;l(B;) NCi, = (Uren Bo(se, 1)) N Ciiy
for all m, n € N. Now we fix m, n € N.

First, we fix t € N and show that B,(sc,,r:) N C;,, C fz;l(B,’l) Indeed, by Step (iii) (1) (a)
of the algorithm M’(m,n), we obtain that ¢; = ¢p, (w,) and r; = 27" for some v € N with
By (sh,,27%) C Bl,. Here n, is the output of the algorithm M (m,by,¢p, ). Note that S =
{Sn}nen is dense in X. It is not hard to see that, for each z € B,(s.,,r:) N C;,,, there is a
valid oracle ¢, that agrees with pp, up to precision 27"*. Thus, for each z € B,(s.,,r:) N C;,,,
M (m, by, $;) outputs the same answer n, and hence, we must have f;, (z) € By (s}, ,27%) C B},.
Hence, we have f;,, (By(s¢,,rt) N C;,,) C By,

Next, we demonstrate that |J,cy Bp(s¢,,7¢) 2 fi;l(B;) NC;, . Fix a point = € fi;l (B,)NC;,,,
and show that © € B,(s.,,r:) for some ¢t € N. Indeed, since f;,,(x) € By, there exists I(z) € N
satisfying that By (f;, (v),27'@*!) C B/. Note that S is dense in X and = € C;,,. It is not
hard to see that there is a valid oracle i, for x that satisfies that {7, (v)}?_; is an admissi-
ble sequence for each ¢ € N. Assume that the output of the algorithm M (m,l(x),$,) is n(z).
Then by the definition of the algorithm, p’ (s;(x),fim (z)) < 271(*). Hence, B, (5;1(90)’ 2_l(5‘)) C
B,y (fim (x), 2_1(“3)“) C B!,. Assume that the oracle @, is only quired up to the precision 2-%(*) by

the algorithm M (m,((z),®,). Denote the sequence {@x(v)}fg) by Q(x). Then Q(z) is an admis-
sible sequence and the oracle ¢ ;) agrees with , up to precision 2-w(@)  Thus, M (m, I(x), @Q(z))
outputs the same answer n(x) € N as M(m,(z),®,). Since Q(z) is an admissible sequence, we
will run the algorithm M (m,1(z), ¢q(r)) in Step (iii) (1) (B) of the algorithm M’(m,n). Since
B, (s;(z),2*l(i’3)) C B/, in Step (iii) (1) (a) of the algorithm M’'(m,n), M'(m,n) will output

¢ = Qo) (w(z)) = ¢, (w(z)) and 7y = 2-%() for some t € N. Note that ©, is an oracle for z.
Then we have z € Bp(s@(w(x))’ 2—w(x)) = By(¢;,7t)- -

We now define a notion of weaker computability property for functions.

Definition 3.18 (Semi-computable function). Let (X, p, S) be a computable metric space,
{in}nen be an effective enumeration of I, and C; C X for each i € I. A sequence {f;}ier of
functions f;: X — R is a sequence of uniformly upper (rvesp. lower) semi-computable functions
with respect to {C;}icr if there exists an algorithm that, for all [, n € N, z € C;,, and oracle
7 for x, on input [, n, and 7, outputs ¢, € Q such that for each n € N, each z € C;,, and
each oracle 7 for z, {q;n r}ien is non-increasing (resp. non-decreasing) and converges to f;, ()
as | — +o0o0. We often omit the phrase “with respect to {C;}ic;” when C; = X for each i € I.
Moreover, a function f: X — R is said to be an upper (resp. a lower) semi-computable function
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on C if {fi}ien defined by f; := f for each ¢ € N| is a sequence of uniformly upper (resp. lower)
semi-computable functions with respect to {C;};cn defined by C; := C for all i € N. We often
omit the phrase “with respect to C” when C' = X.

The following proposition is an immediate consequence of Proposition [3.1

Proposition 3.19. Let (X, p, S) be a computable metric space, and Sg = {qn}tnen. Given
fi: X >R and C; C X for alli € I, the following statements are equivalent:

(i) The sequence { fi}icr is a sequence of uniformly upper (resp. lower) semi-computable func-
tions with respect to {C;}ier.

(ii) There exists a sequence {Uni}(nienxs of uniformly lower semi-computable open sets in
(X, p, S) such that [ (Qn)NCi = UpiNC; with Qp = (=00, ) (resp. Qn = (qn, +00))
foralli el andn € N.

(iii) For each nonempty recursively enumerable set L and each sequence {ri}icr of uniformly
computable real numbers, there exists a sequence {Wy;}u)erx1 of uniformly lower semi-
computable open sets in (X, p, S) such that fl-_l(Rl) NC; = W;; N C; with Ry := (—o0, 1)
(resp. Ry == (r;,+00)) for alll € L and i € I.

Proof. Let {iy}nen be an effective enumeration of I. It follows from Proposition that state-
ment (ii) is equivalent to statement (iii). Hence, it suffices to show that statement (i) is equiv-
alent to statement (ii). Moreover, by Definition {fi}ier is a sequence of uniformly upper
semi-computable functions with respect to {C;}icr if and only if {—f;}ier is a sequence of uni-
formly lower semi-computable functions with respect to {C;};cr. Hence, it suffices to verify the
case where { f;}icr is a sequence of uniformly upper semi-computable functions with respect to
{Citier

(ii) = (i): Assume that there exists a sequence {Up}(nienxs of uniformly lower semi-
computable open sets in (X, p, §) such that fi_l(Qn) NC; = Uy, NC; with @, = (—00,¢y)
for all i € I and n € N. Then we construct an algorithm as follows. First, the algorithm will read
in the input [, n € N and the oracle 7: N — N for the point x € C;, . Applying Proposition [3.13
we can find [ different integers mi, mo,..., m; with x € U,,, ;, for each integer 1 < k < [. In
this case, the algorithm will output min{gm, , ¢my;,---, am,} € Q.

Now we verify that such algorithm ensures that {f;};cr is a sequence of uniformly upper
semi-computable functions with respect to {C;};c;. Indeed, for all i € I and n € N, since
fi_l(Qn) NC; = Up; NC; and Q,, = (—00,qp), we obtain that for each x € Cj, z € U,; is
equivalent to f;(z) < ¢,. Combined with the definition of the above algorithm, this implies that
for fixed n € N and oracle 7: N — N for ¢ € (;,, the sequence of outputs of the algorithm
on input € N is non-increasing and converges to f;, (). Thus, by Definition {fitier is a
sequence of uniformly upper semi-computable functions with respect to {C;}icr.

(i) = (ii): Assume that {f;}icr is a sequence of uniformly upper semi-computable functions
with respect to {C;}ic;. Then by Definition there exists an algorithm M (-, -,-) that, for all
[,neN, z e, and oracle 7 for x, on input [, n, and 7, outputs ¢, € Q such that for each
n € N, each z € C;,, and each oracle 7 for x, {g; .+ }ien is non-increasing (resp. non-decreasing)
and converges to f;, (z) as | — +o0. Let {(an,bn)}nen be an effective enumeration of N2. Now
we design an algorithm M’(-,-) that, for all m, n € N, on input m, n € N, outputs a sequence
{ct}ien of integers and a sequence {r;}ien of positive rational numbers with fizl(Qm) NG, =

(UtGN BP(SCt ) Tt)) N Cq,n .
Begin

(i) Read in the integers m and n.
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(ii) Set v and ¢ both to be 1, and flag; = 0 for each i € N.
(iii) While v > 1 do
(1) If
(A) flag, =0,

(B) the algorithm M(bv7 n, cppav) outputs ¢ € Q with ¢ < ¢,
(the algorithm M (bv, n, pav) terminates after finitely many steps, and hence
the oracle ¢p, is only quired up to some finite precision 27*v),

then
(a) the algorithm M’(m,n) outputs ¢; = ¢p, (w,) and r; = 27",
(b) set flag, to be 1, v to be 0, and ¢ to be t + 1.
(2) Set v to be v+ 1.
End

Finally, by Proposition it suffices to show that f;l(Qm) NCi, = (Usen Bo(5¢,,m1)) N Ci,
for all m, n € N. Now we fix m, n € N.

First, we fix ¢t € N and show that B,(s.,,r:) N C;, C fizl(Qm). Indeed, by Step (iii) (1) (a)
of the algorithm M'(m,n), we obtain that ¢; = ¢p, (w,) and 7, = 27" for some v € N with
q < ¢m, where ¢ is the output of the algorithm M(bv, n, gopav). Note that S = {s, }nen is dense
in X. It is not hard to see that, for each x € B,(sc,,7¢) N C;,, there is a valid oracle ¢, that
agrees with ¢p, up to precision 27*v. Thus, for each x € B,(sc,, ) N C;,, M(by,n, ¢,) outputs
the same answer ¢ € Q and hence, we must have f; (z) € (—00,q) C (—00, ¢m). Hence, we have
fin (Bp(scta 7ﬁt) N Czn) - (—OO, Qm)-

Next, we demonstrate that (J,cn Bp(Se;, 7t) 2 fizl((—oo, gm))NC;, . Fixz € fizl((—oo, gm)) N
C;,,, and show that = € B,(s,, ) for some t € N. Indeed, since S is dense in X and z € Cj,,.
It is not hard to see that there is a valid oracle @, for = that satisfies that {@,(v)}?_, is an
admissible sequence for each ¢ € N. Moreover, since f; (x) € (—00,qm), by the definition of
the algorithm M(-,-,-), there exists Iy € N satisfying that M (ly,n,®,) outputs rop € Q with
70 < ¢m. Thus, by the definition of the algorithm, we have f; (z) < ro. Assume that the oracle
©, is only quired up to the precision 270 by the algorithm M (ly,n,%,). Denote the sequence
{®,(v)},2 by V. Then V is an admissible sequence and the oracle ¢y agrees with @, up to
precision 27%°, Thus, M(lo,n,gov) outputs the same answer rg € Q as M(lp,n,%,). Since V
is an admissible sequence, we will run the algorithm M (I, n, py) in Step (iii) (1) (B) of the
algorithm M'(m,n). Since ro < gm, in Step (iii) (1) (a) of the algorithm M'(m,n), M'(m,n) will
output ¢; = ¢y (wo) = @, (wp) and r; = 270 for some ¢ € N. Note that @, is an oracle for z.

Then we have x € Bp(s@(wo), 27U0) = B(s¢,, 7). g

n?

As an immediate corollary, we obtain the following result.

Corollary 3.20. A sequence of real-valued functions is a sequence of uniformly computable func-
tions if and only it is simultaneously a sequence of uniformly lower semi-computable functions
and a sequence of upper semi-computable functions. Consequently, a sequence of real numbers is
a sequence of uniformly computable real numbers if and only if it is simultaneously a sequence of
uniformly lower semi-computable real numbers and a sequence of uniformly upper semi-computable
real numbers.

In this corollary, the statement on functions follows from Propositions and Consid-
ering constant functions, we have the statement on real numbers (cf. [BBRY11l Proposition 3.3]).
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3.5. Recursively compact sets and recursively precompact metric spaces. Here we recall
the definitions of recursive compactness and recursive precompactness. For a more detailed
discussion, see [GHR1I) Section 2].

Definition 3.21 (Recursively compact set). Let (X, p, S) be a computable metric space
with & = {s;}ien, and {i;};en be an effective enumeration of I. A sequence { K, };c; of compact
sets in X is called uniformly recursively compact (in (X, p, S)) if there exists an algorithm that,
for each n € N, each sequence {m,}} _, of integers, and each sequence {g,, }>_; of positive rational
numbers, upon input, halts if and only if K;, C () _; B(Sm.,,qn). Moreover, a set K C X is called
recursively compact (in (X, p, S)) if the sequence {K;}ien defined by K; := K for each i € N, is
uniformly recursively compact.

Note that for each compact set K and each function f: N —- N, K C |J
if K C Ui:1 Dy, for some k € N. This implies the following result.

neN Pf(n) if and only

Proposition 3.22. Let (X, p, S) be a computable metric space. Suppose {hp tmen (resp. {ln}nen)
is an effective enumeration of a nonempty recursively enumerable set H (resp. L). Assume that
{Kn}nen is uniformly recursively compact and {U,; }icr, is uniformly lower semi-computable open.
Then there exists an algorithm that, for all m, n € N, upon input, halts if and only if Ky, C Uy, .

We collect some fundamental properties of recursively compact sets (cf. [GHRI11, Proposi-
tions 1 & 3)).

Proposition 3.23. Let (X, p, S) be a computable metric space. Assume that X is recursively
compact, and {K;}ier is uniformly recursively compact. Then the following statements are true:

(i) Let x; € X for each i € I. Then {x;}icr is uniformly computable if and only if the
sequence {{z;}}ier of singletons is uniformly recursively compact.

(ii) {X \ Ki}ier is uniformly lower semi-computable open.

(iii) If {U;}ier is uniformly lower semi-computable open, then {K; ~\ U;}icr is uniformly re-
cursively compact.

(iv) If{fi}tier is a sequence of uniformly lower (resp. upper) semi-computable functions f;: X —
R with respect to {K;}icr, then {infoer, fi(x)}ier (resp. {sup,ek, fi(x)}ier) is uniformly
lower (resp. upper) semi-computable.

(v) If {T;}ier is a sequence of uniformly computable functions T;: X — X with respect to
{Ki}icr, then {T;(K;) }ier is uniformly recursively compact.

Proof. (i) Let {in}nen be an effective enumeration of I. First, we prove the forward implication.
Assume that {x; };cs is uniformly computable, then there exists a recursive function ¢: NxI — N
such that p(sw ni ,l‘i) < 27" for all n € N and ¢ € I. Hence, it follows from Proposition
and Definition that {{x;}}icr of singletons is uniformly recursively compact. Conversely, we
assume that {{z;}}ics is uniformly recursively compact. Hence, by Definition there exists
an algorithm Ay (I, m,n) that, on input [, m, n € N, halts if and only if z;, € B(s;,27"). Let
A(t,m,n) be the algorithm that, on input t, m, n € N, outputs the minimal integer 1 <1 < ¢t
such that Ay (I, m,n) halts before its (¢t + 1 —[)-th steps if such [ exists, and outputs 0 otherwise.
We run A(t,m,n) for all t, m, n € N one by one until we find ¢(m,n) € N with A(t(m,n), m,n)
does not output 0. Note that S = {s;}ien is dense in X. Then ¢(m,n) exists for all m, n € N.
Let f(m,n) be the output of A(t(m,n), m,n). It is not hard to see that the function f: N> — N
defined above is recursive. Moreover, by the definition of f, we obtain that x;, € B (s F(mn)>» 2_m)
for all m, n € N. Hence, by Definition {z;}ier is uniformly computable.

(ii) Recall that {B;};en is the effective enumeration of ideal balls in (X, p, §) and write B; =
B(snl,m) for each I € N. First, we define C} := {:U eX: p(m,sm) > rl} and fi(z) = p(w,snl) for
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all x € X and [ € N. Then {f;};en is a sequence of uniformly computable functions. By Defini-
tion {(r7,+00) }1en is a sequence of uniformly lower semi-computable open sets. Combined
with the fact that C; = f; *((ry, +00)) for each I € N and Proposition this implies that
{C1}ien is a sequence of uniformly lower semi-computable open sets. Since {B;}en is a topolog-
ical sub-basis of (X, p) and K; is compact for each i € I, we have X \ K; = |J{B : K; C Ci}
for each ¢ € I. Therefore, by Propositions and {X \ K,}icr is a sequence of uniformly
lower semi-computable open sets.

(iii) For all i € I, sequence {m,}’_, of integers, and sequence {g,}"_, of positive rational
numbers, we obtain that K; \ U; C U _; B(sm,,,qs) if and only if K; C U; U (UL _; B(Sm,.» an))-
Therefore, it follows from Propositions and that { K; \ U, }ien is a sequence of uniformly
recursively compact sets.

(iv) Let {qk }ken be an effective enumeration of Q. Since { f; }ics is a sequence of uniformly lower
semi-computable functions with respect to {K;};cs, by Definition [3.18] {ffl((%, —l—oo))}(i K)eIxN

is a sequence of uniformly lower semi-computable open sets. Note that for each i € I, inf,ck, fi(z) =
sup{qk €ceQ:K; C fi_l((qk., —i—oo))}. Then by Proposition and Definition we obtain that
{infme K; fz(fn)}Z s 1s a sequence of uniformly lower semi-computable real numbers.

Now we assume that {fi}icr is a sequence of uniformly upper semi-computable functions.
Then by Definition {—fi}ier is a sequence of uniformly lower semi-computable functions.
By the previous result, {infycx,(— fz(alr))}Z c; is a sequence of uniformly lower semi-computable
real numbers. Note that inf ek, (—fi(7)) = —sup,¢g, fi(x) for each i € I. Then by Deﬁnition
{supggE K, fz(x)}z cl is a sequence of uniformly upper semi-computable real numbers.

(v) Denote by {U;}1en by an effective enumeration of {UZZL:1 B(sm, qn) :p € N, m, € N g, €
QT,1<n< p}. Since {T;}ier is a sequence of uniformly computable functions with respect
to {K;}ier, by Proposition there exists a sequence {V;} yerxn of uniformly lower semi-
computable open sets such that T;l(Ul) NK; =V,;NK, foralli € I and [ € N. Thus, we obtain
that for all i € I and [ € N, T;(K;) C U is equivalent to K; C V;;. Hence, by Deﬁnition and
Proposition {T;(K;) }ien is a sequence of uniformly recursively compact sets. O

Next, we investigate whether the property of uniform computability for recursively compact
sets is preserved under the union and intersection.

Proposition 3.24. Let (X, p, S) be a computable metric space in which X is recursively compact.

Suppose that H and L are two nonempty recursively enumerable sets with L C I x H, and

iKi,h}(z‘,h)eL is a sequence of uniformly recursively compact sets. Denote Ly, .= {(i,h) € L:i € I}

for each h € H. Then the following statements are true:

(i) {({Kin: (i,h) € Ly} tnhen is uniformly recursively compact.

(ii) If the function F: H — N defined by F(h) = card Ly, for h € H is recursive, then
{U{Kipn : (i,h) € Lp}}hen is uniformly recursively compact.

Proposition (i) follows immediately from Proposition and Proposition (ii) and (iii).

Moreover, Proposition (ii) follows from Definition As a corollary of Proposition (ii),
we obtain the following result.

Corollary 3.25. Let (X, p, S) be a computable metric space. Assume that X is recursively com-
pact, T: X — X is a computable function, and {U;}icr is uniformly lower semi-computable open.
Then {Vn,z’}(n,i)ele is uniformly lower semi-computable open, where V,, ; is defined inductively
by setting Vi; = U; and V41, = T_I(Vm-) NU; for eachn € N and each i € I.

Proof. Since T is a computable function, by Definition we obtain that {T"},en, is a se-
quence of uniformly computable functions. Then by Proposition {T7(Ui) Y n,iyenoxr1 1s @
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sequence of uniformly lower semi-computable open sets. Hence, since X is recursively compact,
by Proposition |3.23| (iii), {X \T7"(U;)} (n,i)enox 1 18 @ sequence of uniformly recursively compact
sets.

Define L € Ng x N x I by L := {(m,n,i) € Ng x N x I :m < n}. Then L is a recursively
enumerable set and { X \T~"™(U;) } (m,n,i)er is uniformly recursively compact. Note that card{m &
No : (m,n,i) € L} = n for all n € N and 7 € I. Then the function F': N x I — Ny given by
F(n,i) = card{m € Ny : (m,n,i) € L} is a recursive function. Thus, by Proposition (ii),
we obtain that {{{X ~ T7™(U;) : m € Ny, (m,n,i) € L}}jenxs 18 a sequence of uniformly
recursively compact sets. Hence, since X is a recursively compact set, by Proposition (ii),
{XNUHX NT7™(U;) : m € No, (m,n,4) € Lt} iensxs = {WT™™(Ui) : m € No, (m,n,i) €
L}} (n,i)enxr is uniformly lower semi-computable open. Since Vi ; = U; and Vj, 11, = T (V,.i)NU;
for all n € N and ¢ € I, it follows by induction that V11, = (_, T=k(U;) for each n € Ny.
Therefore, {Vmi}(n,z’)ENX 7 is uniformly lower semi-computable open. ([

Moreover, given the recursive compactness of X, the computability of functions is preserved
under a finite number of operations among additions and multiplications. We summarize this
property in the following result (cf. [We00), Corollary 4.3.4]).

Proposition 3.26. Let (X, p, S) be a computable metric space in which X is recursively compact,
and H be a nonempty recursively enumerable set. Assume that {fi}icr (resp. {gn}nen) is a se-
quence of uniformly computable functions f;: X — R (resp. gn: X — R). Then {fi+gn}inerxw;
{fi - gn}amerxu are two sequences of uniformly computable functions.

Next, we recall the definition of recursively precompact metric space.

Definition 3.27 (Recursively precompact metric space). Let (X, p, ) be a computable
metric space with § = {s;}ien. Then (X, p, S) is called recursively precompact if there exists an
algorithm that, for each n € N, on input n, outputs a finite subset {r; : 1 < i < m} of N such
that X = U~ B(sr,,27").

Finally, we record [GHR11), Proposition 4] which characterizes complete recursively precompact
metric spaces.

Proposition 3.28. Let (X, p, S) be a computable metric space. Then X is recursively compact
if and only if (X, p) is complete and (X, p, S) is recursively precompact.

3.6. Computability of probability measures. Building upon the theory of computable func-
tions and recursively compact sets, we now discuss the computability of probability measures. We
begin by reviewing the computable structure on the measure space P(X) introduced in [HR09,
Section 4].

Proposition 3.29. Let (X, p, S) be a computable metric space in which X is recursively compact.
Then the following statements are true:

(i) Let S = {sn}nen. Then there exists an enumeration Qs = {vi}ren of the set of Borel
probability measures that are supported on finitely many points in {s, : n € N} and assign
rational values to them such that there exists an algorithm that, for each k € N, upon
mput k, outputs a sequence {nl} _, of integers and a sequence {ql}l 1 of positive rational
numbers satisfying that > 7 q =1 and vy = >_1_, @6

Snl .
(i) (P(X), W,, Qs) is also a computable metric space in whzch P(X) is recursively compact,

where W, is the Wasserstein—Kantorovich metric on P(X) (see (2.2 (E))

Proof. (i) This follows from the fact that N* is a recursively enumerable set.
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(ii) Since X is recursively compact, by Deﬁnition and Proposition (X, p) is a bounded
and complete metric space and (X, p, S) is a recursively precompact computable metric space.
Thus, by [HR09, Proposition 4.1.3], (P(X), W,) is complete and (P(X), W,, Qs) is also a com-
putable metric space.

Since (X, p, S) is a recursively precompact computable metric space, by [HR09, Lemma 2.12],
(P(X),W,, Qs) is also a recursively precompact computable metric space. Thus, combined with
the completeness of (P, W,) and Proposition this implies that P(X) is recursively compact
in (P(X), W), Qs). 0

Let (X, p, S) be a computable metric space in which X is recursively compact. We endow the
measure space P(X) with the computable structure (P(X), W,, Qs) given by Proposition

The computability of measures is then defined via Definition Specifically, a sequence
{pi}icr of measures in P(X) is a sequence of uniformly computable measures if it is uniformly
computable in (P(X), W,, Qs), and a single measure u € P(X) is a computable measure if
the corresponding constant sequence consisting of y is uniformly computable. As a remark, by
[HR09, Theorem 4.1.1]the above computability notion is equivalent to the one defined in [HR09,
Definition 4.1.2].

We now recall a key result on the computability of the integration function (cf. [HR09, Corol-
lary 4.3.2]).

Proposition 3.30. Let (X, p, S) be a computable metric space. Assume that X is recursively
compact in (X, p, S), and that {f; }icr is a sequence of uniformly computable functions f;: X —
R. Then the sequence {Z;}icr of functions Z;: P(X) — R defined by Z;(n) == (p, fi) for p € P(X)
s a sequence of uniformly computable functions.

Proof. Suppose S = {si}ren. Since {f;}icr is a sequence of uniformly computable functions,

by Proposition (iv) and Corollary {sup,cx fi(z)}icr is a sequence of uniformly up-
per semi-computable real numbers. Note that {s;}ren is a sequence of uniformly computable

points. Then it follows from Definitions and that {fi(sk)} @ k)erxn is a sequence of uni-
formly computable real numbers. Hence, it is not difficult to derive from Definition that
{suppen fi(sk)}icr is a sequence of uniformly lower semi-computable real numbers. Since {sy, :
k € N} is dense in X and f; is a continuous function on X, we have sup,cx fi(z) = suppen fi(sk)
for each i € I. Hence, by Corollary we obtain that {sup,cx fi(z)}icr is a sequence of
uniformly computable real numbers. Thus, by [HR09, Corollary 4.3.2], it follows from the uni-
form computability of {f;}ier that the function Z: P(X) x I — R defined by Z(u,i) = Z;(n)
is computable. Therefore, by Definition we obtain that {Z;};cr is a sequence of uniformly
computable functions. [l

As an immediate corollary of Definition [3.18 and Proposition [3.30] we have the following result.

Corollary 3.31. Let (X, p, S) be a computable metric space. Assume that X is recursively
compact in (X, p, S), and that {fi}icr is a sequence of uniformly upper (resp. lower) semi-
computable functions f;: X — R. Then the sequence {Z;}icr of functions Z;: P(X) — R given
by Z; (1) == (1, fi) is a sequence of uniformly upper (resp. lower) semi-computable functions.

Finally, we consider a family of computable functions as follows.

Definition 3.32. Let (X, p) be a metric space. Consider arbitrary r € R, € > 0, and v € X.
Then the function g, ,.: X — R given by

Gu,re(x) = (1 —(1/e)(p(z,u) — r)+)+, for v € X, (3.1)

is called a hat function.
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If r > 0, then gy, is a (1/¢€)-Lipschitz function that equals 1 in the closed ball B(u,) and 0
outside the ball B(u,r + €), and lies strictly between 0 and 1 in the annulus B(u,r +€) ~ B(u,r).

The following result indicates that the characteristic function of a lower semi-computable open
set is a lower semi-computable function.

Proposition 3.33. Let (X, p, S) be a computable metric space. Assume that {U;}icr is a se-
quence of uniformly lower semi-computable open sets. Then there exists a sequence {hn i} (niyenx1
of uniformly computable functions hy;: X — R such that for each i € I, the following properties
are satisfied:
(i) For each x € X, {hyni(x)}nen is non-decreasing and converges to 1y, (x) as n — +oc.
(ii) For each n € N, hyi(x) > 0 for each v € X and hy,i(z) =0 for each x ¢ Uj.
Proof. Suppose § = {sp}nen. Let {qn}nen (resp. {Dp}nen) be an effective enumeration of Q
(resp. the extended ideal balls in (X, p, §)). Then there exist three recursive functions f: N — N,
u: N = N, and v: N = N such that D, = B(sf(n), us}nZL_l) for each n € N. Since {U;}ier
is uniformly lower semi-computable open, by Definition there exists a recursive function
I: N x I = N such that U; = ¢y Dy, 5 for each i € I. Writing wp, ipn = % — %, we
define h,,;: X — R by

hpi(x) = max{gsf(l(m oyt /n(@) 1 € NN [1,n]} forallneN,iel, and z € X.

By (3.1) and Definition it follows that {hy i} (n,iyenxr i a sequence of uniformly computable
functions which satisfies properties (i) and (ii). d

The following result is also useful to describe the computability of subsets of P(X).

Proposition 3.34. Let (X, p, S) be a computable metric space in which X is recursively compact.
Assume that H and L are two nonempty recursively enumerable sets with L € I x H, {U; n} (i n)er
is a sequence of uniformly lower semi-computable open sets in (X, p, S), and {rin}uner s a
sequence of uniformly computable real numbers. Define, for eachi € I, L; == {(i,h) € L: h€ H}
and IC; == {p € P(X) : p(Ui p) < rip for each (i,h) € Li}. Then {I;}icr is uniformly recursively
compact in (P(X), W,, Qs).

Proof. Define {Z; .} nyer, by Zin(pt) = (Ui ) for all (i, h) and p € P(X). Since {U;n}iner is
uniformly lower semi-computable open, by Proposition and Definition {ﬂUi,h}(i,h)E 1 is
a sequence of uniformly lower semi-computable functions. Hence, by Corollary the sequence
{Zi n}(i,ner 1s a sequence of uniformly lower semi-computable functions. Since {r; s} ez is a se-
quence of uniformly computable real numbers, {(7; n, +00)} ¢ n)er, is a sequence of uniformly lower
semi-computable open sets. Combined with the uniform lower semi-computability of {L-’h}(l-’ h)ELs
by Proposition this implies that the sequence {U; }(; nyer, defined by Ui p == {n € P(X) :
Zin(p) > i} for each (i,h) € L is a sequence of uniformly lower semi-computable open sets.
Hence, by Proposition {U(z‘,h) cL; Z/{i7h}i 7 Is a sequence of uniformly lower semi-computable
open sets. Note that by the definition of {/;}icr, Ki = P(X) ~ (U(i,h)eLi Ui ) for each i € I.
Since X is recursively compact, by Proposition P(X) is recursively compact. Therefore, by
Proposition (iii), {K;}ier is uniformly recursively compact. O

The following proposition follows immediately from the Stone—Weierstrass theorem and the
dominated convergence theorem.

Proposition 3.35. Let (X, p, S) be a computable metric space, and X be a recursively com-
pact set in (X, p, S). Then there exists a sequence {Tp}nen of uniformly computable functions
Tn: X — R such that {1, : n € N} is dense in C(X). Hence, u, v € M(X), p(A) = v(A) for
each A € B(X) if and only if (u, 7,7 ) = (v, 7,7 ) for each n € N. by ,



16 QIANDU HE

Proof. First, we assume that {7, : n € N} is dense in C(X) and consider two arbitrary measure
w, v € M(X). Now we demonstrate that u(A) > v(A) for each A € B(X) if and only if
(u,7,7) = (v,7,}) for each n € N. Hence, since {7, : n € N} is dense in C(X), by the Dominated
Convergence Theorem, (p,7,7) > (v,7,7) for each n € N if and only if (u,7%) > (u,7) for
each 7 € C(X). Note that M(X) is the dual space of C(X). Then (u,7") = (u,7") for each
7 € C(X) if and only if u(A) > v(A) for each A € B(X).

Now we construct a sequence {7, }nen of uniformly computable functions 7,,: X — R such that
{mn : n € N} is dense in C(X). Let Fo(S) = {gsmp/q,l/n ip, g, m,n € N} and €&(S) be the
smallest (in the sense of inclusion) set of functions containing Fy(S) and the constant function
1x, closed under a finite number of operators from the following list: additions, multiplications,
and scalar multiplications with rational numbers. By Stone—Weierstrass theorem (see e.g., [Fo99,
Theorem 4.45]), it immediately follows from the above definition of &(S) that &(S) is dense in
C(X).

Finally, we give an effective enumeration of &(S). Indeed, since N* is a recursively enumerable
set, there exists an enumeration {7, }nen of €(S) and a corresponding algorithm that, for each n €
N, on input n, outputs the expression of the function 7,,. Therefore, it follows from Definitions[3.32]
and that {7, }nen is a sequence of uniformly computable functions. O

For a compact metric space (X, p), a Borel-measurable transformation 7: X — X, we say
that A C X is admissible (for T') if A, T(A) € B(X) and T4 is injective. Given a Borel subset
Y C X, define

MX,T;Y) = {pePX): u(T"'(A)NY) < pu(A) for each Borel A C X}. (3.2)

The following result indicates the recursive compactness of the set M(X,T;Y") (cf. [BHLZ25,
Lemma 4.12]).

Proposition 3.36. Let (X, p, S) be a computable metric space in which X is recursively compact,
and {U;}ier be a sequence of uniformly lower semi-computable open sets. Assume that {T;}ier
is a sequence of uniformly computable functions T;: X — X with respect to {U;}icr. Then
{M(X,T;; Uj) Yier is uniformly recursively compact in (P(X), Wy, Qs). In particular, if {T;}icr
is a sequence of uniformly computable functions, then {M(X,T;)}ier is uniformly recursively
compact.

Proof. Since {U;}ier is uniformly lower semi-computable open, by Proposition [3.33 {ﬂUi}i cr I8
a sequence of uniformly lower semi-computable functions. By Proposition [3.35] there exists a
sequence {7, tnen of uniformly computable functions 7,,: X — R such that {7, : n € N} is dense
in C(X). Hence, by (3.2)), we obtain that

MX,T;U;) = (\{nePX): (u, (7} oT3) - Lys,) < (7,7 )} for each i € I. (3.3)
neN

Since {7, }nen is a sequence of uniformly computable functions, and {T;};cs is a sequence of
uniformly computable functions with respect to {U;};cr, by Propositions we obtain that
{7 o Ti}(ni)enxs is a sequence of uniformly computable functions with respect to {U;}ier.

Hence, since 7,7 is nonnegative function for each n € N, it follows from uniformly lower semi-

computability of {U;}ier and {]lUi}iGI and Definition that {(7-;r o TZ) . ILUZ.}(M.)EN” is a
sequence of uniformly computable functions. Thus, since RT is a lower semi-computable open
set, by Proposition m the sequence {Vm}(m enxs 1S a sequence of uniformly lower semi-
computable open sets, where V,, ; = {,u e P(X <u, (7-+ ) T) . ]lUi> > <,u, Tf{>} for allm € N
and ¢ € I. Thus, by Proposmon u {UneN Vm}i is uniformly lower semi-computable open.
Since X is recursively compact, by Proposition P(X) is recursively compact. Therefore,
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by Proposition (iii) and (3.3), we obtain that {M(X,T;;U;)}ier is uniformly recursively
compact. m

3.7. Computability over the Riemann sphere.

Proposition 3.37. Let S(@) = {8p }nen be an enumeration on(((A:) ={a+bi:a, be Q} such
that there exists an algorithm that for each n € N, upon input n, outputs p1, q1, r1, p2, q2, 72 € N

with s, = (—1)”% + (—1)”5—;1 Then (@, o, S(@)) is a computable metric space in which C is

recursively compact, where o is the chordal metric on C.

Proof. Since Q(@) is dense in (@, o). Then Definition (i) holds. By the definition of S(@),
Definition (ii) holds. Moreover, by the definition of the chordal metric o, {o(sm; $n) } (m,n)enz
is a sequence of uniformly computable real numbers, hence, Definition (iii) holds. Thus,

(@, o, S (@)) is a computable metric space. By Definition (@, o, S (C)) is recursively pre-
i

compact. Combined with the completeness of (X, o), by Proposition [3.28} this implies that Cis
a recursively compact set. (I

Proposition 3.38. There exists an algorithm that satisfies the following property:

For each m € N, each n € N, and each complex polynomial p of degree m, this algorithm
outputs a sequence {q;}", of integers satisfying that if x1, xa,..., Ty are all the zeros of the
map p (counting with multiplicity), then there exists a permutation o on {1, 2,..., m} such that
J(uqa(i),xi) < 27" for each integer 1 < i < m, where {uj }jeN is the effective enumeration of the

set Q(@), after we input the following data in this algorithm:

(i) an algorithm A, computing all the coefficients of the polynomial p,
(ii) the integer n.

Proof. Let {s;}ien be an effective enumeration of the set {a + bi : a, b € Q}. Now we design an
algorithm M (-, -) satisfying the following property:

For each polynomial @), there exists a zero zy of () satisfying that for each m € N, M (.AQ, m)
outputs a point I, € Q(@) with o(l,,, 20) < 27" after we input an algorithm Ag computing all
the coefficients of the polynomial () and the integer m.

First, we use the algorithm Ag to compute the sequence {Q'(s;)} and select a subsequence
{8;}ien of {si}ien of all the ideal points §; with Q'(3;) # 0. Then we define two sequences
{7(Q,9) }ien and {B(Q,9) }ien by
QW (s;) [ Q(5)
k1Q'(5:) Q'(5:)
Since there exist finitely many roots for the rational map Q" and {s;}ien is dense in C, {5;}ien
is also dense in C. Combining with the fact that 5(Q,&) = 0 for each root £ € C of @, we can
enumerate the sequence {3;};cn and find ip € N with a(Q, o) = 5(Q,70)7(Q, ) < ag (here we
can select o = 0.03, see Remark 6 of [BCSS98| Section 8.2]). Next, compute an integer k,, with

km > logs(m + 4 4 logs (8(Q, i0)))- (3.5)
Hence, by Theorem 2 of [BCSS98, Section 8.2], there exists a zero zp € C of @ satisfying that

. |8i0 — 20l _ 2B(Q,70)
‘Né(sio) - zo‘ < 1202,5_1 < 921 for each t € N.

¥(Q, 1) == sup . (3.4)

k2

and ((Q,1) = ’

Here Ng(z) =z — g,((?) for each z € C. Combining with QD this implies that
. | < 25(62’ ZO) < 2B(Q720) _ 1

OIS Toakm—1 S 9m+3+10g,(B(Qri0)  gm+2°

’Ngm(gio) -
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Finally, we use the algorithm Ag to compute and output a point /,,, € Q (((Aj) with |lm—N5m (§ZO)| <

2-m=2 Tt follows immediately from the definition of the chordal metric o on C (see Section
that o(z,w) < 2|z — w| for each pair of z, w € C. Hence, by (3.6),

(I, 20) < 2llm — 20| < 2(|lm — NG (5i)| + | NG (5ip) — 20]) <27

So far we have designed the algorithm M(-,-).
Next, we come back to the proof of the original statement. Fix an integer n and a complex
polynomial p of degree n. First, we can use the algorithm M (.Ap, ) to compute a zero of the

polynomial p, say zp. Then we consider the map p(z) := %. Since p(z9) = 0, P is a polynomial
of degree n — 1. Now we claim that we can compute all the coefficients of the polynomial p
from the point zy and all the coefficients of the polynomial p. Indeed, if p(z) = > 7, a;z" and
p(z) = Z?:_()l b;z*, then it is not hard to see that b; = a;+1+ zobi41 for each integer 0 < i < n—1,
where b, is set to be 0. Hence, we obtain an algorithm A; computing all the coefficients of p.
Then we can use the algorithm M (Aﬁ, - ) to compute a zero of the polynomial p, i.e., a new zero
of the polynomial p. Therefore, we can compute all the zeros of p (counting with multiplicity)

recursively. [l

4. ERGODIC THEORY

We review basic concepts from ergodic theory. For more detailed discussions, we refer the
reader to [Wa82) Section 4].

Let (X, B, i) be a probability space. A partition & = {Ap : h € H} of (X,B,u) is a disjoint
collection of elements of B whose union is X, where H is a countable index set. For each
pair of partitions £ = {Ap, : h € H} and n = {B; : | € L} of X, their join is the partition
Evn={A,NB:he H €L}

Assume that 7: X — X is a measure-preserving transformation of (X, B, ). Consider a
partition ¢ = {4, : h € H} of X. For each n € N, T~"(£) denotes the partition {T!(4,) :
h € H}, and &} denotes the join £ VT 1)V ---V T~=(=1(¢). The entropy of € is H,(§) =
— > nen M(Ag)log(p(Ap)) € [0,+00], where 0log0 is defined to be zero. One can show that if
H,(&) < 400, then ngl}rloo H,(§})/n exists (see e.g. [Wa82, Chapter 4]). We denote this limit

by h,(T,&) and call it the measure-theoretic entropy of T relative to §&. The measure-theoretic
entropy of T for u is defined as

hu(T) = sup{h,(T,€) : { is a partition of X with H,(£) < +oo}. (4.1)

We now introduce thermodynamic formalism, a particular branch of ergodic theory. The main
objects of study are the topological pressure and equilibrium states (see e.g. [PUL0, Wa82]; for
the general Borel-measurable setting used in Approach II, see e.g. [IT10} Definition 1.1], [DeT17,
Section 2.3], and [DoT23|, Chapter 1.4]).

Let (X, p) be a compact metric space, T: X — X be a Borel-measurable transformation such
that M(X,T) # 0, and ¢: X — [—00,400] be a Borel function. Then the topological pressure of
the potential ¢ with respect to the transformation T is given by

P(T,¢) = sup{hu(T) + (u,®) : p € M(X,T) and (, ¢p) > —o0}. (4.2)

A measure p € M(X,T) that attains the supremum in is called an equilibrium state for
the transformation 7' and the potential ¢. Denote the set of all such measures by £(T,¢). In
particular, when the potential ¢ is the constant function 0, we denote hiop (1) := P(T',0) and say
that a measure p € M(X,T) is a measure of maximal entropy of T if p € E(T,0).

Definition 4.1 (Jacobian). Let (X, p) be a compact metric space, and T: X — X be a Borel-
measurable transformation. We say that A C X is admissible (for T') if A, T(A) € B(X), and
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T|4 is injective. Suppose J: X — [0,+00) is a Borel function, p € P(X), and E € B(X) with
u(E) = 1. Then J is said to be a Jacobian on E for T with respect to pu if for all admissible sets
ACE,

u(T'(A)) Z/AJdu-

Moreover, we say that J is a Jacobian for T with respect to p if there exists E € B(X) with
u(E) = 1 such that J is a Jacobian on E for T" with respect to pu.

Recall that P(X;Y) ={pu e P(X) : u(Y) =1} for Y € B(X). We state below the hypotheses
under which we will develop our theory in this section.

Definition 4.2. We say that the sextuple (X, p, T, Y, {Yi }ken, 1) is admissible if it has the
following properties:

(i) (X, p) is a compact metric space.
(ii) T: X — X is a Borel-measurable transformation.

(iii) {Y%}ren is a sequence of pairwise disjoint admissible sets for T

(iv) ¥ = Upen Y-
(V) pe M(X, T)NP(X;Y).

The following proposition states the uniqueness of the Jacobian and provides a lower bound
for the measure-theoretic entropy in terms of the Jacobian.

Proposition 4.3. Let (X, p, T, Y, {Yi}ken, i) be admissible. Assume that J: X — [0,400) is
a Jacobian for T with respect to p. Then J(x) > 1 for p-a.e. x € X, and h,(T) = (p,log(J)).
Moreover, for each Borel function J: X — [0,400), J is a Jacobian for T with respect to p if

and only if J(x) = J(z) for p-a.e. v € X.

The lower bound given above is a classical result in ergodic theory known as the Rokhlin en-
tropy formula. We refer the reader to [Sa99, Theorem 4.2] for a version for topological Markov
shifts and to [Col2, Corollary 12.1] for a version for finite admissible partitions. The uniqueness
of the Jacobian immediately follows from [Ro49, Theorem 2.7], [PUL0, Definition 2.9.2 & Propo-
sition 2.9.5].

Proposition is the so-called Rokhlin entropy formula (see [Sa99, Theorem 4.2] for its topo-
logical Markov shift version and [Sa99, Section 4.1.3] for its proof). Now we establish it in our
context.

Let (X, 0, T, Y, {Yk brens ,u) be admissible. Let @ be the completion of yu. Then by [Ro49,
Theorem 2.7], the compact metric space (X, p) equipped the complete measure fi is a Lebesgue
space in the sense of V. Rokhlin. Moreover, according to [PULQ, Definition 2.9.2] (or an equiv-
alent definition of essentially countable to one endomorphisms in [Pa69, Subsection 10.1]), T" is
essentially countable to one. We omit V. Rokhlin’s definition of Lebesgue spaces and essentially
countable to one endomorphisms here and refer the reader to [Ro49 Section 2], since the only
result we will use about them are the following result on Jacobians.

Proposition 4.4. Let (X, B, p) be a Lebesgue space, T : X — X be an essentially countable to
one endomorphism, and p € M(X,T). Let J: X — [0,00) be a Jacobian for T with respect to
w. Then H,(e|T~Y(e)) = [logJ du, where € denotes the point partition of X, and H,(e|T~1(¢))
denotes the conditional entropy of € given the smallest o-algebra which contains T~ (e).

This follows from [PUL0, Theorem 2.9.6], [Pa69, Lemma 10.5], and [Pa69) Definition 4.2]. Now
we complete the proof of Proposition
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Proof of Proposition[{.3. First, we show that J(z) > 1 for p-a.e. z € X. Indeed, Since J is a
Jacobian for T with respect to p, by Definition[4.1] there exists E € B(X) with p(E) = 1 such that
J is a Jacobian on E for T" with respect to j. Hence, since p € M(X,T) and Y = |J, ¢ Y, for each
Borel A C ENY, we have [,Jdu =3y [yny, T dit = 2Zpen T (ANYR)) = 3 peny m(ANY) =
w1(A). Hence, J(x) > 1 for p-a.e. x € ENY. Then by p € P(X;Y), we obtain that J(z) > 1 for
p-ae. z € X.

Now we show h,(T) > (u,log(J)). Let @z be the completion of the measure ;. Then by
Definition e M(X,T) and J is a Jacobian for 7" with respect to fi. Since (X, p) is compact
metric space, by [Ro49, Theorem 2.7], (X, B, i) is a Lebesgue space, where B denotes the o-
algebra containing all i-measurable sets. Since T satisfies Assumption 1 (ii) and (iii), by [PUL0,
Definition 2.9.2], T is an essentially countable to one endomorphism. By Proposition we
have Hz(e|T71(e)) = (1, log(J)) = {(u,log(J)). Note that € is an invariant partition, i.e., T~ !(e)
is coarser than e. Then by [Ro67, Section 7], we have hy(T,e) = Hz(e|T~'(e)). By [Ro67,
Section 9], hi(T) = hu(T,€). Since fi is the completion of the measure ,u, by (4.1), we have
hu(T) = hg(T). Thus, we obtain that h,(T) = hy(T) = hu(T,€) = Ha(e|T1(€)) = (u, log(J)).

Next, we assume that J: X — [0,4+00) is a Jacobian on E for T with respect to . Then we
have [,Jdu = p(T(A fAJ dy for each admissible A C EN E. Hence, by u(ENE) = 1, we
obtain that J(x) = J( ) for p-a.e. x € X.

Finally, we assume that J(z) = J(z) for p-a.e. € X. Then for each admissible A C E, we
have p(T(A)) = [,J dp = fAJ dp. Thus, J is a Jacobian for T with respect to . O
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