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1. Introduction

This note is devoted to some important definitions and results on computable analysis and
ergodic theory. Specifically, for the aspect of computable analysis, we extend the results from
the Euclidean space version to the general computable metric space version. For the aspect of
ergodic theory, we summarize Rokhlin’s formula at the end of this paper.

2. Notation

Let C be the complex plane and Ĉ be the Riemann sphere. Let i denote the imaginary unit

in the complex plane C. Define the chordal metric σ on Ĉ as follows: σ(z, w) := 2|z−w|√
1+|z|2

√
1+|w|2

for all z, w ∈ C, and σ(∞, z) = σ(z,∞) := 2√
1+|z|2

for all z ∈ C. Let S2 denote an oriented

topological 2-sphere. We use N to denote the set of integers greater than or equal to 1 and
N∗ :=

⋃
k∈NNk. We write N0 := {0} ∪ N and N∗

0 := {0} ∪ N∗. We denote by Q+ the set of all
positive rational numbers and by R+ the set of all positive real numbers. The symbol log denotes
the natural logarithm. For x ∈ R, we define ⌊x⌋ as the greatest integer ⩽ x, ⌈x⌉ the smallest
integer ⩾ x, and x+ := max{x, 0}. The cardinality of a set A is denoted by cardA.

Consider a map f : X → X on a setX. We write fn for the n-th iterate of f , and f−n := (fn)−1,
for each n ∈ N. We set f0 := idX , the identity map on X. For a real-valued function ϕ : X → R,
we write Snϕ(x) = Sf

nϕ(x) :=
∑n−1

j=0 ϕ
(
f j(x)

)
for x ∈ X and n ∈ N0. We omit the superscript f

when the map f is clear from the context. When n = 0, by definition S0ϕ = 0.
Let (X, d) be a metric space. We denote by B(X) the σ-algebra of all Borel subsets of X. For

each subset Y ⊆ X, we denote the diameter of Y by diamd Y := sup{d(x, y) : x, y ∈ Y }, the
interior of Y by intY , and the characteristic function of Y by 1Y which maps each x ∈ Y to
1 ∈ R and vanishes elsewhere.
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For all r ∈ R and x ∈ X, we denote the open (resp. closed) ball of radius r centered at x by
Bd(x, r) := {y ∈ X : d(x, y) < r} (resp. Bd(x, r) := {y ∈ X : d(x, y) ⩽ r}). For all r ∈ R and non-
empty set K ⊆ X, we define d(x,K) := infy∈K d(x, y), and Bd(K, r) := {x ∈ X : d(x,K) < r}.
We often omit the metric d in the subscript when it is clear from the context.

For a compact metric space (X, d) and a continuous map g : X → X, we denote by C(X) the
space of continuous functions from X to R, by M(X) (resp. M(X, g)) the set of finite signed
Borel measures (resp. g-invariant Borel probability measures) on X, and P(X) the set of Borel
probability measures on X. Moreover, for each Borel subset C ∈ B(X), P(X;C) denotes the
set {µ ∈ P(X) : µ(C) = 1}. By the Riesz representation theorem, we can identify the dual of
C(X) with the space M(X). For µ ∈ M(X), we use ∥µ∥ to denote the total variation norm of
µ, suppµ the support of µ, and

⟨µ, u⟩ :=
∫
u dµ

for each µ-integrable Borel function u on X. If we do not specify otherwise, we equip C(X)
with the uniform norm ∥ · ∥C(X) := ∥ · ∥∞, and equip M(X), P(X), and M(X, g) with the weak∗

topology.
The space of real-valued Hölder continuous functions with an exponent α ∈ (0, 1] on a compact

metric space (X, d) is denoted as C0,α(X, d). For each ϕ ∈ C0,α(X, d),

|ϕ|α,d := sup{|ϕ(x)− ϕ(y)|/d(x, y)α : x, y ∈ X, x ̸= y}. (2.1)

For a complete separable metric space (X, d), we recall the Wasserstein–Kantorovich metric
Wd on P(X) given by

Wd(µ, ν) := sup
{
|⟨µ, f⟩ − ⟨ν, f⟩| : f ∈ C0,1(X, d), |f |1,d ⩽ 1

}
. (2.2)

Note that for Borel probability measures in P(X), the convergence in Wd is equivalent to the
convergence in the weak∗ topology (see e.g., [Vi09, Corollary 6.13]).

3. Computable analysis

We recall fundamental notions and results from recursion theory and computable analysis.1

We present, in order, definitions and results concerning the computability of real numbers, com-
putable structures on metric spaces, computability of open sets, functions, compact sets, and
probability measures.

3.1. Computability over the reals. We begin by reviewing basic notations and concepts from
classical recursion theory; for an introduction, see e.g. [Bri94, Chapter 3].

Definition 3.1 (Effective enumeration and recursively enumerable set). Let S ⊆ N∗ be
a nonempty set. An effective enumeration of S is a sequence {xi}i∈N with S = {xi : i ∈ N} such
that there exists an algorithm that, for each i ∈ N, upon input i, outputs xi.

Moreover, a set I ⊆ N∗ is said to be a recursively enumerable set2 if I = ∅ or there exists an
effective enumeration of I.

For brevity, the symbol I denotes a nonempty recursively enumerable set throughout this
subsection.

Note that Nk, for k ∈ N, and N∗ are all recursively enumerable sets by Definition 3.1. We then
define partial recursive functions and recursive functions.

1Our notion of algorithm is consistent with Type-2 machines defined in [We00, Definition 2.1.1].
2We emphasize that recursively enumerable sets in this article are subsets of N∗.
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Definition 3.2 (Partial recursive and recursive function). Let {in}n∈N be an effective
enumeration of I. We say that f : I → N∗

0 is partial recursive if there exists an algorithm that,
for each n ∈ N, on input n, outputs f(in) if f(in) ∈ N∗, and runs forever otherwise, namely, if
f(in) = 0. We say that f : I → N∗

0 is recursive if f is a partial recursive function with f(I) ⊆ N∗.

We now define the computability of real numbers.

Definition 3.3 (Computable real number). A real number x is called computable if there exist

three recursive functions f : N → N, g : N → N, and h : N → N such that
∣∣(−1)h(n)f(n)/g(n)−x

∣∣ <
2−n for all i ∈ I and n ∈ N.

Let {xi}i∈I be a sequence of real numbers. We say that {xi}i∈I is a sequence of uniformly
computable real numbers if there exist three recursive functions f : N × I → N, g : N × I → N,
and h : N× I → N such that

∣∣(−1)h(n,i)f(n, i)/g(n, i)− xi
∣∣ < 2−n for all i ∈ I and n ∈ N.

Clearly, x ∈ R is computable if and only if {xi}i∈N defined by xi := x for all i ∈ N is uniformly
computable. For analogous concepts in the sequel, we will define the uniform sequence version
and regard the individual case as the special case of constant sequences.

3.2. Computable metric spaces.

Definition 3.4 (Computable metric space). A computable metric space is a triple (X, ρ, S)
satisfying that

(i) (X, ρ) is a separable metric space,

(ii) S = {sn}n∈N forms a countable dense subset {sn : n ∈ N} of X, and

(iii) {ρ(sm, sn)}(m,n)∈N2 is a sequence of uniformly computable real numbers.

The points in S are called ideal. Since N3 is recursively enumerable, the collection B := {B(si,m/n) :
i, m, n ∈ N} can be enumerated as {Bl}l∈N satisfying the following: there exists an algorithm
that, for each l ∈ N, upon input l, outputs i, m, n ∈ N with Bl = B(si,m/n). We call the
elements in B ideal balls and such an enumeration of B an effective enumeration of ideal balls in
(X, ρ, S).

We then define the computability of points in a computable metric space.

Definition 3.5 (Computable point). Let (X, ρ, S) be a computable metric space with S =
{si}i∈N, and {xi}i∈I be a sequence of points in X. Then {xi}i∈I is called uniformly computable
(in (X, ρ, S)) if there exists a recursive function f : N× I → N such that ρ

(
sf(n,i), xi

)
< 2−n for

all n ∈ N and i ∈ I. Moreover, a point x in X is computable (in (X, ρ, S)) if {xi}i∈N defined by
xi := x for all i ∈ N is uniformly computable.

We now specify the computable structure on R. Let SQ = {qn}n∈N be the enumeration of
Q induced by an effective enumeration of N3 via the mapping (a, b, c) 7→ (−1)ca/b. Note that
{dR(qm, qn)}(m,n)∈N2 is a sequence of uniformly computable real numbers, where dR is the Eu-

clidean metric. Then the triple
(
R, dR, SQ

)
forms a computable metric space according to Def-

inition 3.4. A similar construction provides a computable structure for R+. In this article, we
fix these as the standard computability structures on R and R+. It is clear that under these
structures, Definitions 3.3 and 3.5 are equivalent for the computability of real numbers. That is,
a sequence of reals is uniformly computable in one sense if and only if it is in the other.

We also consider a weaker notion of computability over R that leverages its natural ordered
structure.

Definition 3.6 (Semi-computable real number). Let {xi}i∈I be a sequence of real num-
bers. We say that {xi}i∈I is uniformly lower (resp. upper) semi-computable if there exist three
recursive functions f : N × I → N, g : N × I → N, and h : N × I → N such that for each
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i ∈ I,
{
(−1)h(n,i)f(n, i)/g(n, i)

}
n∈N is non-decreasing (resp. non-increasing) and converges to

xi as n → +∞. Moreover, a real number x is called lower (resp. upper) semi-computable if
the sequence {xi}i∈N defined by xi := x for each i ∈ N is uniformly lower (resp. upper) semi-
computable.

3.3. Lower semi-computable open sets. We define an effective version of open sets and collect
some relevant results.

Let (X, ρ, S) be a computable metric space. Let B be the set of ideal balls, and {Bl}l∈N be
an effective enumeration of ideal balls in (X, ρ, S). We define the set B0 := B ∪ {∅} of extended
ideal balls and an enumeration {Dl}l∈N of B0 such that D1 = ∅ and Dl = Bl−1 for each integer
l ⩾ 2. We call such an enumeration an effective enumeration of extended ideal balls in (X, ρ, S).

Definition 3.7 (Lower semi-computable open set). Let (X, ρ, S) be a computable metric
space, and {Dl}l∈N be an effective enumeration of extended ideal balls. Then a sequence {Ui}i∈I
of open sets in X is said to be uniformly lower semi-computable open (in (X, ρ, S)) if there exists
a recursive function f : N× I → N such that Ui =

⋃
n∈NDf(n,i) for each i ∈ I. Moreover, an open

set U ⊆ X is called lower semi-computable open (in (X, ρ, S)) if the sequence {Ui}i∈N defined
by Ui := U for i ∈ N is uniformly lower semi-computable open.

The above definition of a lower semi-computable open set differs slightly from the ones in
[BBRY11, Definition 3.4] and [BRY14, Definition 2.4]. In our definition, we use extended ideal
balls, which include the empty set. Moreover, the term recursively open set in the literature
(e.g. [GHR11, Subsection 2.2 and Definition 2.4] and [HR09, Subsection 3.3]) is equivalent to the
notion of lower semi-computable open set defined above.

Proposition 3.8. Let (X, ρ, S) be a computable metric space, and {Bn}n∈N be an effective
enumeration of ideal balls in (X, ρ, S). Assume that Ui is an open subset in X for each i ∈ I.
Then {Ui}i∈I is uniformly lower semi-computable open if and only if there exists a recursively
enumerable set E ⊆ N× I such that Ui =

⋃
{Bn : (n, i) ∈ E} for each i ∈ I.

The above result is classical in recursion theory. Here is a brief proof.

Proof of Proposition 3.8. Recall that D1 = ∅ and Dl = Bl−1 for each l ∈ N. First, we assume
that {Ui}i∈I is a sequence of uniformly lower semi-computable open sets. Then by Definition 3.7,
there exists a recursive function f : N × I → N such that Ui =

⋃
n∈NDf(n,i) for each i ∈ I.

Now we define E := {(f(n, i) − 1, i) ∈ N × I : n ∈ N, i ∈ I, f(n, i) ⩾ 2}. Thus, Ui =
⋃{

Bn :

n ∈ N and (n, i) ∈ E
}
for each i ∈ I. By Definition 3.1, N × I is a recursively enumerable set,

namely, there exists an effective enumeration {(nm, im)}m∈N of N× I. Now we define a function
m : N → N by m(k) := min{m ∈ N : m > m(k − 1), f(nm, im) ⩾ 2}. Then since f is a recursive
function, we obtain that m is a recursive function. Thus, by Definition 3.1, {(nm(k), im(k))}k∈N
is an effective enumeration of E, hence, E is a recursively enumerable set.

Next, we assume that E ⊆ N × I is a recursively enumerable set such that Ui =
⋃{

Bn : n ∈
N and (n, i) ∈ E

}
for each i ∈ I. We split the proof into two cases depending on whether E = ∅.

Case 1. E ̸= ∅.
In this case, there exists an effective enumeration {(nk, ik)}k∈N of the set E, where nk ∈ N and

ik ∈ I for each k ∈ N. Then we define a function f : N × I → N0 by f(n, i) := 1 + nk, where k
is the minimal integer k such that card{m ∈ N : 1 ⩽ m ⩽ k and im = i} = n for all n ∈ N and
i ∈ I. By Definition 3.2, the function f is recursive. Moreover, by the definition of the function
f , Ui =

⋃{
Bn : n ∈ N and (n, i) ∈ E

}
=

⋃{
Dn+1 : n ∈ N and (n, i) ∈ E

}
=

⋃
n∈NDf(n,i).

Thus, by Definition 3.7, {Ui}i∈I is a sequence of uniformly lower semi-computable open sets.

Case 2. E = ∅.
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In this case, Ui = ∅ for each i ∈ I. We define a function f : N× I → N0 by f(n, i) = dir0o for
all n ∈ N and i ∈ I. By Definition 3.2, f is recursive. Therefore, by Definition 3.7, {Ui}i∈I is a
sequence of uniformly lower semi-computable open sets. □

Note that we can algorithmically decide whether s ∈ B for each ideal point s ∈ S and each
extended ideal ball B ∈ B0. The following result then follows immediately from Definition 3.7.

Proposition 3.9. Let (X, ρ, S) be a computable metric space with S = {sn}n∈N. Assume that
{Ui}i∈I is uniformly lower semi-computable open. Then there exists a recursively enumerable set
E ⊆ N× I such that {sn : (n, i) ∈ Ei} = {sn : n ∈ N} ∩ Ui, where Ei := {(n, i) ∈ E : n ∈ N} for
each i ∈ I.

Proof. Note that by Definition 3.4 (ii) and (iii), we can decide whether s ∈ B for each s ∈ S and
B ∈ B. Then since {Bm}m∈N is an effective enumeration of the set B of ideal balls, there exists a
recursively enumerable set F ⊆ N2 such that {sn : (n,m) ∈ F} = {sn : n ∈ N}∩Bm for each m ∈
N. Since {Ui}i∈I is a sequence of uniformly lower semi-computable open sets, by Proposition 3.8,
there exists a recursively enumerable set G ⊆ N× I such that Ui =

⋃
{Bm : (m, i) ∈ G} for each

i ∈ I. Define E := {(n, i) ∈ N× I : (n,m) ∈ F, (m, i) ∈ G}. Then by the definitions of F and G,
we have that for each i ∈ I, {sn : (n, i) ∈ E} =

⋃
(m,i)∈G{sn : n ∈ N}∩Bm = {sn : n ∈ N}∩Ui. □

The following two results are two classical results in computable analysis which both follow
immediately from Definitions 3.1 and 3.7.

Proposition 3.10. Let (X, ρ, S) be a computable metric space. Assume that H and L are two
nonempty recursively enumerable sets with L ⊆ I ×H, and that {Ui,h}(i,h)∈L is uniformly lower
semi-computable open. Then {

⋃
{Ui,h : (i, h) ∈ Lh}}h∈H is uniformly lower semi-computable

open, where Lh := {(i, h) ∈ L : i ∈ I} for each h ∈ H. In particular, if {Ui}i∈I is uniformly lower
semi-computable open, then

⋃
i∈I Ui is lower semi-computable open.

Proof. Since {Ui,k}(i,k)∈L is a sequence of uniformly lower semi-computable open sets, by Defi-
nition 3.8, there exists a recursively enumerable set E ⊆ N × L such that Ui,k =

⋃
{Bn : n ∈

N, (n, i, k) ∈ E} for each (i, k) ∈ L. Define F := {(n, k) ∈ N × K : i ∈ I, (n, i, k) ∈ E}. Then
F is also a recursively enumerable set. Thus, we obtain that

⋃
{Ui,k : i ∈ I, (i, k) ∈ L} =⋃

{Bn : i ∈ I, n ∈ N, (n, i, k) ∈ E} =
⋃
{Bn : n ∈ N, (n, k) ∈ F} for each k ∈ K. Therefore,

{
⋃
{Ui,k : i ∈ I, (i, k) ∈ L}}k∈K is a sequence of uniformly lower semi-computable open sets.
In particular, we assume that {Ui}i∈I is a sequence of uniformly lower semi-computable open

sets. Let Vi,n := Ui for all i ∈ I and n ∈ N. Then {Vi,n}(i,n)∈I×N is a sequence of uniformly lower
semi-computable open sets. Thus, by previous result, we obtain that {

⋃
{Vi,n : i ∈ I}}n∈N is a

sequence of uniformly lower semi-computable open sets. Note that
⋃
{Vi,n : i ∈ I} =

⋃
i∈I Ui for

each n ∈ N. Then by Definition 3.7,
⋃

i∈I Ui is a lower semi-computable open set. □

Proposition 3.11. Let (X, ρ, S) be a computable metric space. Assume that {ri}i∈I is a se-
quence of uniformly lower semi-computable real numbers and {xi}i∈I is uniformly computable in
(X, ρ, S). Then {B(xi, ri)}i∈I is uniformly lower semi-computable open.

Proof. Since {ri}i∈I be a sequence of uniformly lower semi-computable real numbers, by Defi-
nition 3.3 (ii) and Definition 3.5, there exists a sequence of uniformly computable real numbers
{rn,i}(n,i)∈N×I such that {rn,i}n∈N is non-decreasing and converges to ri as n converges to +∞
for each i ∈ N. Since {xi}i∈I is a sequence of uniformly computable points, by Definition 3.5,
there exists a recursive function f : N× I → N such that ρ

(
sf(m,i), xi

)
< 2−m for all m ∈ N and

i ∈ I. Thus, we obtain that for each i ∈ I,

B(xi, ri) =
⋃
m∈N

B
(
sf(m,i), ri − 2−m

)
=

⋃
(m,n)∈N2

B
(
sf(m,i), rn,i − 2−m

)
.
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Since f : N × I → N is a recursive function, by the uniform computability of the sequence
{rn,i}(n,i)∈N×I , we have that

{
B
(
sf(m,i), rn,i− 2−m

)}
(i,m,n)∈I×N2 is a sequence of uniformly lower

semi-computable open sets. Thus, by Proposition 3.10, {B(xi, ri)}i∈I is a sequence of uniformly
lower semi-computable open sets. □

3.4. Computability of functions. We begin with the definition of oracles for points.

Definition 3.12 (Oracle). Let (X, ρ, S) be a computable metric space with S = {si}i∈N, and
x ∈ X. We say that a function τ : N → N is an oracle for x if ρ

(
sτ(n), x

)
< 2−n for each n ∈ N.

Proposition 3.13. Let (X, ρ, S) be a computable metric space. Suppose that {in}n∈N is an
effective enumeration of a non-empty recursively enumerable set I, and {Ui}i∈I is a sequence of
uniformly lower semi-computable open sets. Then there exists an algorithm that for all x ∈ X,
n ∈ N, and oracle τ for x, on input n ∈ N and the oracle τ : N → N, halts if and only if x ∈ Uin.

Proof. Since {Ui}i∈I is a sequence of uniformly lower semi-computable open sets, by Definition 3.7,
there exists a recursive function f : N× I → N such that Ui =

⋃
k∈NDf(k,i) for each i ∈ I. Thus,

by the definition of {Dm}m∈N and Definition 3.2, there exists an algorithm A0(·, ·) that on input
k ∈ N and i ∈ I, outputs a, b ∈ N, and m ∈ N0 such that Df(k,i) = B(sa,m/b).

By Definition 3.12, for each x ∈ X and each oracle τ : N → N, x ∈ Uin if and only if
B
(
sτ(t), 2

−t
)
⊆ Df(k,in) for some k ∈ N. With the algorithm A0, we can compute the cen-

ters and radii of these ideal balls. Thus, it is not hard to construct the algorithm that for all
x ∈ X, n ∈ N, and oracle τ for x, on input n ∈ N and the oracle τ : N → N, halts if and only if
x ∈ Uin . □

With the above definition, computable functions can be defined as follows.

Definition 3.14 (Computable function). Let (X, ρ, S) and (X ′, ρ′, S ′) be computable metric
spaces with S = {sn}n∈N and S ′ = {s′n}n∈N. Assume that {in}n∈N is an effective enumeration
of I, and Ci ⊆ X for each i ∈ I. Then a sequence {fi}i∈I of functions fi : X → X ′ is called a
sequence of uniformly computable functions with respect to {Ci}i∈I if there exists an algorithm
that, for all l, n ∈ N, x ∈ Cin , and oracle τ for x, on input l, n, and τ , outputs m ∈ N with
ρ′(s′m, fin(x)) < 2−l. We often omit the phrase “with respect to {Ci}i∈I” when Ci = X for all
i ∈ I. Moreover, a function f : X → X ′ is said to be a computable function on C if {fi}i∈N,
defined by fi := f for all i ∈ N, is a sequence of uniformly computable functions with respect to
{Ci}i∈N defined by Ci := C for all i ∈ N. We often omit the phrase “with respect to C” when
C = X.

Computable functions serve as an effective version of continuous functions. The following result
provides examples of computable functions (see e.g. [We00, Examples 4.3.3 and 4.3.13.5]).

Example 3.15. The exponential function exp: R → R and the logarithmic function log : R+ → R
are computable functions.

We recall the following classical characterization of computable functions (cf. [RY21a, Propo-
sition 5.2.14] and [BBRY11, Proposition 3.6]).

Before Proposition 3.17, an important notion will be introduced below which is useful in the
proof of Propositions 3.17 and 3.19.

Definition 3.16. Let (X, ρ, S) be a computable metric space. For each q ∈ N, we say that a
sequence {pi}qi=1 of integers is admissible if ρ

(
spi , spi+1

)
< 2−i−1 for each integer 1 ⩽ i ⩽ q − 1.

Fix an effective enumeration {Pn}n∈N of all admissible sequences. Moreover, for each admissible
sequence P = {pi}qi=1, we can define a corresponding function φP : N → N as follows:

φP (i) :=

{
pi if 1 ⩽ i ⩽ q;

pq if i ⩾ q + 1
for each i ∈ N.
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Indeed, given a computable metric space (X, ρ, S), by Definition 3.4 (iii), we can check whether
a given sequence of finitely many integers is admissible. Hence, by enumerating all sequences of
finite integers, it is not difficult to obtain an effective enumeration {Pn}n∈N of all admissible
sequences. Moreover, for each admissible sequence P , by Definition 3.12, φP is an oracle for
spq ∈ X, where pq is the last integer of the admissible sequence P .

Proposition 3.17. Let (X, ρ, S) and (X ′, ρ′, S ′) be computable metric spaces. Suppose {B′
n}n∈N

is an effective enumeration of ideal balls in (X ′, ρ′, S ′). Given fi : X → X ′ and Ci ⊆ X for each
i ∈ I, the following statements are equivalent:

(i) The sequence {fi}i∈I is a sequence of uniformly computable functions with respect to
{Ci}i∈I .

(ii) There exists a sequence {Un,i}(n,i)∈N×I of uniformly lower semi-computable open sets in

(X, ρ, S) such that f−1
i (B′

n) ∩ Ci = Un,i ∩ Ci for all i ∈ I and n ∈ N.
(iii) For each nonempty recursively enumerable set K and each sequence

{
V ′
k

}
k∈K of uniformly

lower semi-computable open sets, there exists a sequence {Wk,i}(k,i)∈K×I of uniformly

lower semi-computable open sets in (X, ρ, S) such that f−1
i

(
V ′
k

)
∩ Ci = Wk,i ∩ Ci for all

k ∈ K and i ∈ I.

Proof. Write S = {sn}n∈N and S ′ = {s′n}n∈N. Let {in}n∈N be an effective enumeration of I.
Since {B′

n}n∈N is an effective enumeration of ideal balls, by Definition 3.7, {B′
n}n∈N is a sequence

of uniformly lower semi-computable open sets. Hence, it follows from Proposition 3.10 that
statement (ii) is equivalent to statement (iii).

Next, we prove that statement (ii) implies statement (i). Now we design an algorithm A1(·, ·, · )
that for all l, n ∈ N, x ∈ Cin , and oracle τ : N → N for x, on input l, n ∈ N, and the oracle τ ,
outputs m ∈ N satisfying that ρ′(s′m, fin(x)) < 2−l, i.e., x ∈ f−1

in

(
Bρ′

(
s′m, 2−l

))
.

Indeed, by Definition 3.4 (ii), S ′ = {s′n}n∈N is dense in X. Thus, for all l, n ∈ N, x ∈ Cin ,
there exists corresponding m ∈ N with x ∈ f−1

in

(
Bρ′

(
s′m, 2−l

))
. Note that

{
Bρ′

(
s′m, 2−l

)}
(l,m)∈N2

is a sequence of ideal balls. Hence, it follows from statement (ii) that there exists a sequence
{Vl,m,i}(l,m,i)∈N2×I of uniformly lower semi-computable open sets such that f−1

i

(
Bρ′

(
s′m, 2−l

))
∩

Ci = Vl,m,i ∩ Ci for all l, m ∈ N, and i ∈ I. Hence, for all i ∈ I, l, m ∈ N, and x ∈ Ci, we

obtain that x ∈ f−1
i

(
Bρ′

(
s′m, 2−l

))
if and only if x ∈ Vl,m,i. Moreover, since {Vl,m,i}(l,m,i)∈N2×I

is uniformly lower semi-computable open, it follows from Proposition 3.13 that we can construct
an algorithm that, for all l, m, n ∈ N, x ∈ Cin , and oracle τ : N → N for x, on input l, m, n ∈ N
and the oracle τ , halts if and only if x ∈ Vl,m,in . Thus, we establish that {fi}i∈I is a sequence of
uniformly computable functions with respect to {Ci}i∈I .

Finally, we establish that statement (i) implies statement (ii). Suppose that {fi}i∈I is a
sequence of uniformly computable functions with respect to {Ci}i∈I . We demonstrate that
there exists a sequence {Wn,i}(n,i)∈N×I of uniformly lower semi-computable open sets such that

f−1
i (B′

n) ∩ Ci = Wn,i ∩ Ci for all n ∈ N and i ∈ I.
Since {fi}i∈I is a sequence of uniformly computable functions with respect to {Ci}i∈I , by

Definition 3.14, there exists an algorithm M(·, ·, · ) satisfying that for all m, l ∈ N and x ∈ Cim ,
and oracle τ : N → N for x, M(m, l, τ) outputs n ∈ N satisfying that ρ′(s′n, fim(x)) < 2−l. Let
{(an, bn)}n∈N be an effective enumeration of N2. Now we design an algorithm M ′(·, · ) that, for
all m, n ∈ N, on input m, n ∈ N, outputs a sequence {ct}t∈N of integers and a sequence {rt}t∈N
of positive rational numbers with f−1

im
(B′

n) ∩ Cim =
(⋃

t∈NBρ(sct , rt)
)
∩ Cim .

Begin

(i) Read in the integers m and n.

(ii) Set v and t both to be 1, and flagi = 0 for each i ∈ N.
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(iii) While v ⩾ 1 do

(1) If

(A) flagv = 0,

(B) the algorithm M
(
m, bv, φPav

)
outputs nv ∈ N satisfying that

Bρ′
(
s′nv

, 2−bv
)
⊆ B′

n

(the algorithm M
(
m, bv, φPav

)
terminates after finitely many steps, and hence

the oracle φPav
is only quired up to some finite precision 2−wv),

then

(a) the algorithm M ′(m,n) outputs ct := φPav
(wv) and rt := 2−wv ,

(b) set flagv to be 1, v to be 0, and t to be t+ 1.

(2) Set v to be v + 1.

End

Finally, by Proposition 3.10, it suffices to show that f−1
im

(B′
n)∩Cim =

(⋃
t∈NBρ(sct , rt)

)
∩Cim

for all m, n ∈ N. Now we fix m, n ∈ N.
First, we fix t ∈ N and show that Bρ(sct , rt) ∩ Cim ⊆ f−1

im
(B′

n). Indeed, by Step (iii) (1) (a)

of the algorithm M ′(m,n), we obtain that ct = φPav
(wv) and rt = 2−wv for some v ∈ N with

Bρ′
(
s′nv

, 2−bv
)
⊆ B′

n. Here nv is the output of the algorithm M
(
m, bv, φPav

)
. Note that S =

{sn}n∈N is dense in X. It is not hard to see that, for each x ∈ Bρ(sct , rt) ∩ Cim , there is a
valid oracle φ̃x that agrees with φPav

up to precision 2−wv . Thus, for each x ∈ Bρ(sct , rt) ∩ Cim ,

M(m, bv, φ̃x) outputs the same answer nv and hence, we must have fim(x) ∈ Bρ′
(
s′nv

, 2−bv
)
⊆ B′

n.

Hence, we have fim
(
Bρ(sct , rt) ∩ Cim

)
⊆ B′

n.

Next, we demonstrate that
⋃

t∈NBρ(sct , rt) ⊇ f−1
im

(B′
n) ∩Cim . Fix a point x ∈ f−1

im
(B′

n) ∩Cim ,
and show that x ∈ Bρ(sct , rt) for some t ∈ N. Indeed, since fim(x) ∈ B′

n, there exists l(x) ∈ N
satisfying that Bρ′

(
fim(x), 2

−l(x)+1
)
⊆ B′

n. Note that S is dense in X and x ∈ Cim . It is not
hard to see that there is a valid oracle φx for x that satisfies that {φx(v)}

q
v=1 is an admissi-

ble sequence for each q ∈ N. Assume that the output of the algorithm M(m, l(x), φx) is n(x).

Then by the definition of the algorithm, ρ′
(
s′n(x), fim(x)

)
< 2−l(x). Hence, Bρ′

(
s′n(x), 2

−l(x)
)
⊆

Bρ′
(
fim(x), 2

−l(x)+1
)
⊆ B′

n. Assume that the oracle φx is only quired up to the precision 2−w(x) by

the algorithm M(m, l(x), φx). Denote the sequence {φx(v)}
w(x)
v=1 by Q(x). Then Q(x) is an admis-

sible sequence and the oracle φQ(x) agrees with φx up to precision 2−w(x). Thus, M
(
m, l(x), φQ(x)

)
outputs the same answer n(x) ∈ N as M(m, l(x), φx). Since Q(x) is an admissible sequence, we
will run the algorithm M

(
m, l(x), φQ(x)

)
in Step (iii) (1) (B) of the algorithm M ′(m,n). Since

Bρ′
(
s′n(x), 2

−l(x)
)
⊆ B′

n, in Step (iii) (1) (a) of the algorithm M ′(m,n), M ′(m,n) will output

ct = φQ(x)(w(x)) = φx(w(x)) and rt = 2−w(x) for some t ∈ N. Note that φx is an oracle for x.

Then we have x ∈ Bρ

(
sφx(w(x)), 2

−w(x)
)
= Bρ(sct , rt). □

We now define a notion of weaker computability property for functions.

Definition 3.18 (Semi-computable function). Let (X, ρ, S) be a computable metric space,
{in}n∈N be an effective enumeration of I, and Ci ⊆ X for each i ∈ I. A sequence {fi}i∈I of
functions fi : X → R is a sequence of uniformly upper (resp. lower) semi-computable functions
with respect to {Ci}i∈I if there exists an algorithm that, for all l, n ∈ N, x ∈ Cin , and oracle
τ for x, on input l, n, and τ , outputs ql,n,τ ∈ Q such that for each n ∈ N, each x ∈ Cin , and
each oracle τ for x, {ql,n,τ}l∈N is non-increasing (resp. non-decreasing) and converges to fin(x)
as l → +∞. We often omit the phrase “with respect to {Ci}i∈I” when Ci = X for each i ∈ I.
Moreover, a function f : X → R is said to be an upper (resp. a lower) semi-computable function
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on C if {fi}i∈N defined by fi := f for each i ∈ N, is a sequence of uniformly upper (resp. lower)
semi-computable functions with respect to {Ci}i∈N defined by Ci := C for all i ∈ N. We often
omit the phrase “with respect to C” when C = X.

The following proposition is an immediate consequence of Proposition 3.17.

Proposition 3.19. Let (X, ρ, S) be a computable metric space, and SQ = {qn}n∈N. Given
fi : X → R and Ci ⊆ X for all i ∈ I, the following statements are equivalent:

(i) The sequence {fi}i∈I is a sequence of uniformly upper (resp. lower) semi-computable func-
tions with respect to {Ci}i∈I .

(ii) There exists a sequence {Un,i}(n,i)∈N×I of uniformly lower semi-computable open sets in

(X, ρ, S) such that f−1
i (Qn)∩Ci = Un,i∩Ci with Qn := (−∞, qn) (resp. Qn := (qn,+∞))

for all i ∈ I and n ∈ N.
(iii) For each nonempty recursively enumerable set L and each sequence {rl}l∈L of uniformly

computable real numbers, there exists a sequence {Wl,i}(l,i)∈L×I of uniformly lower semi-

computable open sets in (X, ρ, S) such that f−1
i (Rl)∩Ci = Wl,i ∩Ci with Rl := (−∞, rl)

(resp. Rl := (rl,+∞)) for all l ∈ L and i ∈ I.

Proof. Let {in}n∈N be an effective enumeration of I. It follows from Proposition 3.10 that state-
ment (ii) is equivalent to statement (iii). Hence, it suffices to show that statement (i) is equiv-
alent to statement (ii). Moreover, by Definition 3.18, {fi}i∈I is a sequence of uniformly upper
semi-computable functions with respect to {Ci}i∈I if and only if {−fi}i∈I is a sequence of uni-
formly lower semi-computable functions with respect to {Ci}i∈I . Hence, it suffices to verify the
case where {fi}i∈I is a sequence of uniformly upper semi-computable functions with respect to
{Ci}i∈I .

(ii) ⇒ (i): Assume that there exists a sequence {Un,i}(n,i)∈N×I of uniformly lower semi-

computable open sets in (X, ρ, S) such that f−1
i (Qn) ∩ Ci = Un,i ∩ Ci with Qn := (−∞, qn)

for all i ∈ I and n ∈ N. Then we construct an algorithm as follows. First, the algorithm will read
in the input l, n ∈ N and the oracle τ : N → N for the point x ∈ Cin . Applying Proposition 3.13,
we can find l different integers m1, m2, . . . , ml with x ∈ Umk,in for each integer 1 ⩽ k ⩽ l. In
this case, the algorithm will output min{qm1 , qm2 , . . . , qml

} ∈ Q.
Now we verify that such algorithm ensures that {fi}i∈I is a sequence of uniformly upper

semi-computable functions with respect to {Ci}i∈I . Indeed, for all i ∈ I and n ∈ N, since
f−1
i (Qn) ∩ Ci = Un,i ∩ Ci and Qn = (−∞, qn), we obtain that for each x ∈ Ci, x ∈ Un,i is
equivalent to fi(x) < qn. Combined with the definition of the above algorithm, this implies that
for fixed n ∈ N and oracle τ : N → N for x ∈ Cin , the sequence of outputs of the algorithm
on input l ∈ N is non-increasing and converges to fin(x). Thus, by Definition 3.18, {fi}i∈I is a
sequence of uniformly upper semi-computable functions with respect to {Ci}i∈I .

(i) ⇒ (ii): Assume that {fi}i∈I is a sequence of uniformly upper semi-computable functions
with respect to {Ci}i∈I . Then by Definition 3.18, there exists an algorithm M(·, ·, · ) that, for all
l, n ∈ N, x ∈ Cin , and oracle τ for x, on input l, n, and τ , outputs ql,n,τ ∈ Q such that for each
n ∈ N, each x ∈ Cin , and each oracle τ for x, {ql,n,τ}l∈N is non-increasing (resp. non-decreasing)
and converges to fin(x) as l → +∞. Let {(an, bn)}n∈N be an effective enumeration of N2. Now
we design an algorithm M ′(·, · ) that, for all m, n ∈ N, on input m, n ∈ N, outputs a sequence
{ct}t∈N of integers and a sequence {rt}t∈N of positive rational numbers with f−1

in
(Qm) ∩ Cin =(⋃

t∈NBρ(sct , rt)
)
∩ Cin .

Begin

(i) Read in the integers m and n.
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(ii) Set v and t both to be 1, and flagi = 0 for each i ∈ N.
(iii) While v ⩾ 1 do

(1) If

(A) flagv = 0,

(B) the algorithm M
(
bv, n, φPav

)
outputs q ∈ Q with q ⩽ qm

(the algorithm M
(
bv, n, φPav

)
terminates after finitely many steps, and hence

the oracle φPav
is only quired up to some finite precision 2−wv),

then

(a) the algorithm M ′(m,n) outputs ct := φPav
(wv) and rt := 2−wv ,

(b) set flagv to be 1, v to be 0, and t to be t+ 1.

(2) Set v to be v + 1.

End

Finally, by Proposition 3.10, it suffices to show that f−1
in

(Qm) ∩Cin =
(⋃

t∈NBρ(sct , rt)
)
∩Cin

for all m, n ∈ N. Now we fix m, n ∈ N.
First, we fix t ∈ N and show that Bρ(sct , rt) ∩ Cin ⊆ f−1

in
(Qm). Indeed, by Step (iii) (1) (a)

of the algorithm M ′(m,n), we obtain that ct = φPav
(wv) and rt = 2−wv for some v ∈ N with

q ⩽ qm, where q is the output of the algorithm M
(
bv, n, φPav

)
. Note that S = {sn}n∈N is dense

in X. It is not hard to see that, for each x ∈ Bρ(sct , rt) ∩ Cin , there is a valid oracle φ̃x that
agrees with φPav

up to precision 2−wv . Thus, for each x ∈ Bρ(sct , rt)∩Cin , M(bv, n, φ̃x) outputs
the same answer q ∈ Q and hence, we must have fin(x) ∈ (−∞, q) ⊆ (−∞, qm). Hence, we have
fin

(
Bρ(sct , rt) ∩ Cin

)
⊆ (−∞, qm).

Next, we demonstrate that
⋃

t∈NBρ(sct , rt) ⊇ f−1
in

((−∞, qm))∩Cin . Fix x ∈ f−1
in

((−∞, qm))∩
Cin , and show that x ∈ Bρ(sct , rt) for some t ∈ N. Indeed, since S is dense in X and x ∈ Cim .
It is not hard to see that there is a valid oracle φx for x that satisfies that {φx(v)}

q
v=1 is an

admissible sequence for each q ∈ N. Moreover, since fin(x) ∈ (−∞, qm), by the definition of
the algorithm M(·, ·, · ), there exists l0 ∈ N satisfying that M(l0, n, φx) outputs r0 ∈ Q with
r0 ⩽ qm. Thus, by the definition of the algorithm, we have fin(x) ⩽ r0. Assume that the oracle
φx is only quired up to the precision 2−w0 by the algorithm M(l0, n, φx). Denote the sequence
{φx(v)}

w0
v=1 by V . Then V is an admissible sequence and the oracle φV agrees with φx up to

precision 2−w0 . Thus, M
(
l0, n, φV

)
outputs the same answer r0 ∈ Q as M(l0, n, φx). Since V

is an admissible sequence, we will run the algorithm M
(
l0, n, φV

)
in Step (iii) (1) (B) of the

algorithm M ′(m,n). Since r0 ⩽ qm, in Step (iii) (1) (a) of the algorithm M ′(m,n), M ′(m,n) will
output ct = φV (w0) = φx(w0) and rt = 2−w0 for some t ∈ N. Note that φx is an oracle for x.
Then we have x ∈ Bρ

(
sφx(w0), 2

−w0
)
= Bρ(sct , rt). □

As an immediate corollary, we obtain the following result.

Corollary 3.20. A sequence of real-valued functions is a sequence of uniformly computable func-
tions if and only it is simultaneously a sequence of uniformly lower semi-computable functions
and a sequence of upper semi-computable functions. Consequently, a sequence of real numbers is
a sequence of uniformly computable real numbers if and only if it is simultaneously a sequence of
uniformly lower semi-computable real numbers and a sequence of uniformly upper semi-computable
real numbers.

In this corollary, the statement on functions follows from Propositions 3.17 and 3.19. Consid-
ering constant functions, we have the statement on real numbers (cf. [BBRY11, Proposition 3.3]).
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3.5. Recursively compact sets and recursively precompact metric spaces. Here we recall
the definitions of recursive compactness and recursive precompactness. For a more detailed
discussion, see [GHR11, Section 2].

Definition 3.21 (Recursively compact set). Let (X, ρ, S) be a computable metric space
with S = {si}i∈N, and {il}l∈N be an effective enumeration of I. A sequence {Ki}i∈I of compact
sets in X is called uniformly recursively compact (in (X, ρ, S)) if there exists an algorithm that,
for each n ∈ N, each sequence {mn}pn=1 of integers, and each sequence {qn}pn=1 of positive rational
numbers, upon input, halts if and only if Kil ⊆

⋃p
n=1B(smn , qn). Moreover, a set K ⊆ X is called

recursively compact (in (X, ρ, S)) if the sequence {Ki}i∈N defined by Ki := K for each i ∈ N, is
uniformly recursively compact.

Note that for each compact set K and each function f : N → N, K ⊆
⋃

n∈NDf(n) if and only

if K ⊆
⋃k

n=1Df(n) for some k ∈ N. This implies the following result.

Proposition 3.22. Let (X, ρ, S) be a computable metric space. Suppose {hm}m∈N (resp. {ln}n∈N)
is an effective enumeration of a nonempty recursively enumerable set H (resp. L). Assume that
{Kh}h∈H is uniformly recursively compact and {Ul}l∈L is uniformly lower semi-computable open.
Then there exists an algorithm that, for all m, n ∈ N, upon input, halts if and only if Khm ⊆ Uln.

We collect some fundamental properties of recursively compact sets (cf. [GHR11, Proposi-
tions 1 & 3]).

Proposition 3.23. Let (X, ρ, S) be a computable metric space. Assume that X is recursively
compact, and {Ki}i∈I is uniformly recursively compact. Then the following statements are true:

(i) Let xi ∈ X for each i ∈ I. Then {xi}i∈I is uniformly computable if and only if the
sequence {{xi}}i∈I of singletons is uniformly recursively compact.

(ii) {X ∖Ki}i∈I is uniformly lower semi-computable open.

(iii) If {Ui}i∈I is uniformly lower semi-computable open, then {Ki ∖ Ui}i∈I is uniformly re-
cursively compact.

(iv) If {fi}i∈I is a sequence of uniformly lower (resp. upper) semi-computable functions fi : X →
R with respect to {Ki}i∈I , then {infx∈Ki fi(x)}i∈I (resp. {supx∈Ki

fi(x)}i∈I) is uniformly
lower (resp. upper) semi-computable.

(v) If {Ti}i∈I is a sequence of uniformly computable functions Ti : X → X with respect to
{Ki}i∈I , then {Ti(Ki)}i∈I is uniformly recursively compact.

Proof. (i) Let {in}n∈N be an effective enumeration of I. First, we prove the forward implication.
Assume that {xi}i∈I is uniformly computable, then there exists a recursive function φ : N×I → N
such that ρ

(
sφ(n,i), xi

)
< 2−n for all n ∈ N and i ∈ I. Hence, it follows from Proposition 3.13

and Definition 3.21 that {{xi}}i∈I of singletons is uniformly recursively compact. Conversely, we
assume that {{xi}}i∈I is uniformly recursively compact. Hence, by Definition 3.21, there exists
an algorithm A0(l,m, n) that, on input l, m, n ∈ N, halts if and only if xin ∈ B(sl, 2

−m). Let
A(t,m, n) be the algorithm that, on input t, m, n ∈ N, outputs the minimal integer 1 ⩽ l ⩽ t
such that A0(l,m, n) halts before its (t+1− l)-th steps if such l exists, and outputs 0 otherwise.
We run A(t,m, n) for all t, m, n ∈ N one by one until we find t(m,n) ∈ N with A(t(m,n),m, n)
does not output 0. Note that S = {si}i∈N is dense in X. Then t(m,n) exists for all m, n ∈ N.
Let f(m,n) be the output of A(t(m,n),m, n). It is not hard to see that the function f : N2 → N
defined above is recursive. Moreover, by the definition of f , we obtain that xin ∈ B

(
sf(m,n), 2

−m
)

for all m, n ∈ N. Hence, by Definition 3.5, {xi}i∈I is uniformly computable.

(ii) Recall that {Bl}l∈N is the effective enumeration of ideal balls in (X, ρ, S) and write Bl =
B
(
snl

, rl
)
for each l ∈ N. First, we define Cl :=

{
x ∈ X : ρ

(
x, snl

)
> rl

}
and fl(x) = ρ

(
x, snl

)
for
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all x ∈ X and l ∈ N. Then {fl}l∈N is a sequence of uniformly computable functions. By Defini-
tion 3.7, {(rl,+∞)}l∈N is a sequence of uniformly lower semi-computable open sets. Combined
with the fact that Cl = f−1

l ((rl,+∞)) for each l ∈ N and Proposition 3.17, this implies that
{Cl}l∈N is a sequence of uniformly lower semi-computable open sets. Since {Bl}l∈N is a topolog-
ical sub-basis of (X, ρ) and Ki is compact for each i ∈ I, we have X ∖Ki =

⋃
{Bk : Ki ⊆ Ck}

for each i ∈ I. Therefore, by Propositions 3.22 and 3.8, {X ∖Ki}i∈I is a sequence of uniformly
lower semi-computable open sets.

(iii) For all i ∈ I, sequence {mn}pn=1 of integers, and sequence {qn}pn=1 of positive rational
numbers, we obtain that Ki ∖ Ui ⊆

⋃p
n=1B(smn , qn) if and only if Ki ⊆ Ui ∪

(⋃p
n=1B(smn , qn)

)
.

Therefore, it follows from Propositions 3.10 and 3.22 that {Ki∖Ui}i∈N is a sequence of uniformly
recursively compact sets.

(iv) Let {qk}k∈N be an effective enumeration of Q. Since {fi}i∈I is a sequence of uniformly lower
semi-computable functions with respect to {Ki}i∈I , by Definition 3.18,

{
f−1
i ((qk,+∞))

}
(i,k)∈I×N

is a sequence of uniformly lower semi-computable open sets. Note that for each i ∈ I, infx∈Ki fi(x) =
sup

{
qk ∈ Q : Ki ⊆ f−1

i ((qk,+∞))
}
. Then by Proposition 3.22 and Definition 3.3, we obtain that{

infx∈Ki fi(x)
}
i∈I is a sequence of uniformly lower semi-computable real numbers.

Now we assume that {fi}i∈I is a sequence of uniformly upper semi-computable functions.
Then by Definition 3.18, {−fi}i∈I is a sequence of uniformly lower semi-computable functions.
By the previous result,

{
infx∈Ki(−fi(x))

}
i∈I is a sequence of uniformly lower semi-computable

real numbers. Note that infx∈Ki(−fi(x)) = − supx∈Ki
fi(x) for each i ∈ I. Then by Definition 3.3,{

supx∈Ki
fi(x)

}
i∈I is a sequence of uniformly upper semi-computable real numbers.

(v) Denote by {Ul}l∈N by an effective enumeration of
{⋃p

n=1B(smn , qn) : p ∈ N, mn ∈ N, qn ∈
Q+, 1 ⩽ n ⩽ p

}
. Since {Ti}i∈I is a sequence of uniformly computable functions with respect

to {Ki}i∈I , by Proposition 3.17, there exists a sequence {Vi,l}(i,l)∈I×N of uniformly lower semi-

computable open sets such that T−1
i (Ul)∩Ki = Vi,l ∩Ki for all i ∈ I and l ∈ N. Thus, we obtain

that for all i ∈ I and l ∈ N, Ti(Ki) ⊆ Ul is equivalent to Ki ⊆ Vi,l. Hence, by Definition 3.21 and
Proposition 3.22, {Ti(Ki)}i∈N is a sequence of uniformly recursively compact sets. □

Next, we investigate whether the property of uniform computability for recursively compact
sets is preserved under the union and intersection.

Proposition 3.24. Let (X, ρ, S) be a computable metric space in which X is recursively compact.
Suppose that H and L are two nonempty recursively enumerable sets with L ⊆ I × H, and
{Ki,h}(i,h)∈L is a sequence of uniformly recursively compact sets. Denote Lh := {(i, h) ∈ L : i ∈ I}
for each h ∈ H. Then the following statements are true:

(i) {
⋂
{Ki,h : (i, h) ∈ Lh}}h∈H is uniformly recursively compact.

(ii) If the function F : H → N defined by F (h) := cardLh for h ∈ H is recursive, then
{
⋃
{Ki,h : (i, h) ∈ Lh}}h∈H is uniformly recursively compact.

Proposition 3.24 (i) follows immediately from Proposition 3.10 and Proposition 3.23 (ii) and (iii).
Moreover, Proposition 3.24 (ii) follows from Definition 3.21. As a corollary of Proposition 3.24 (ii),
we obtain the following result.

Corollary 3.25. Let (X, ρ, S) be a computable metric space. Assume that X is recursively com-
pact, T : X → X is a computable function, and {Ui}i∈I is uniformly lower semi-computable open.
Then {Vn,i}(n,i)∈N×I is uniformly lower semi-computable open, where Vn,i is defined inductively

by setting V1,i := Ui and Vn+1,i := T−1(Vn,i) ∩ Ui for each n ∈ N and each i ∈ I.

Proof. Since T is a computable function, by Definition 3.2, we obtain that {Tn}n∈N0 is a se-
quence of uniformly computable functions. Then by Proposition 3.17, {T−n(Ui)}(n,i)∈N0×I is a
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sequence of uniformly lower semi-computable open sets. Hence, since X is recursively compact,
by Proposition 3.23 (iii), {X ∖T−n(Ui)}(n,i)∈N0×I is a sequence of uniformly recursively compact
sets.

Define L ⊆ N0 × N × I by L := {(m,n, i) ∈ N0 × N × I : m < n}. Then L is a recursively
enumerable set and {X∖T−m(Ui)}(m,n,i)∈L is uniformly recursively compact. Note that card{m ∈
N0 : (m,n, i) ∈ L} = n for all n ∈ N and i ∈ I. Then the function F : N × I → N0 given by
F (n, i) := card{m ∈ N0 : (m,n, i) ∈ L} is a recursive function. Thus, by Proposition 3.24 (ii),
we obtain that {

⋃
{X ∖ T−m(Ui) : m ∈ N0, (m,n, i) ∈ L}}(n,i)∈N×I is a sequence of uniformly

recursively compact sets. Hence, since X is a recursively compact set, by Proposition 3.23 (ii),
{X ∖

⋃
{X ∖ T−m(Ui) : m ∈ N0, (m,n, i) ∈ L}}(n,i)∈N×I = {

⋂
{T−m(Ui) : m ∈ N0, (m,n, i) ∈

L}}(n,i)∈N×I is uniformly lower semi-computable open. Since V1,i = Ui and Vn+1,i = T−1(Vn,i)∩Ui

for all n ∈ N and i ∈ I, it follows by induction that Vn+1,i =
⋂n

k=0 T
−k(Ui) for each n ∈ N0.

Therefore, {Vn,i}(n,i)∈N×I is uniformly lower semi-computable open. □

Moreover, given the recursive compactness of X, the computability of functions is preserved
under a finite number of operations among additions and multiplications. We summarize this
property in the following result (cf. [We00, Corollary 4.3.4]).

Proposition 3.26. Let (X, ρ, S) be a computable metric space in which X is recursively compact,
and H be a nonempty recursively enumerable set. Assume that {fi}i∈I (resp. {gh}h∈H) is a se-
quence of uniformly computable functions fi : X → R (resp. gh : X → R). Then {fi+gh}(i,h)∈I×H ,
{fi · gh}(i,h)∈I×H are two sequences of uniformly computable functions.

Next, we recall the definition of recursively precompact metric space.

Definition 3.27 (Recursively precompact metric space). Let (X, ρ, S) be a computable
metric space with S = {si}i∈N. Then (X, ρ, S) is called recursively precompact if there exists an
algorithm that, for each n ∈ N, on input n, outputs a finite subset {ri : 1 ⩽ i ⩽ m} of N such
that X =

⋃m
i=1B(sri , 2

−n).

Finally, we record [GHR11, Proposition 4] which characterizes complete recursively precompact
metric spaces.

Proposition 3.28. Let (X, ρ, S) be a computable metric space. Then X is recursively compact
if and only if (X, ρ) is complete and (X, ρ, S) is recursively precompact.

3.6. Computability of probability measures. Building upon the theory of computable func-
tions and recursively compact sets, we now discuss the computability of probability measures. We
begin by reviewing the computable structure on the measure space P(X) introduced in [HR09,
Section 4].

Proposition 3.29. Let (X, ρ, S) be a computable metric space in which X is recursively compact.
Then the following statements are true:

(i) Let S = {sn}n∈N. Then there exists an enumeration QS = {νk}k∈N of the set of Borel
probability measures that are supported on finitely many points in {sn : n ∈ N} and assign
rational values to them such that there exists an algorithm that, for each k ∈ N, upon
input k, outputs a sequence {nl}pl=1 of integers and a sequence {ql}pl=1 of positive rational
numbers satisfying that

∑p
l=1 ql = 1 and νk =

∑p
l=1 qlδsnl

.

(ii) (P(X), Wρ, QS) is also a computable metric space in which P(X) is recursively compact,
where Wρ is the Wasserstein–Kantorovich metric on P(X) (see (2.2)).

Proof. (i) This follows from the fact that N∗ is a recursively enumerable set.
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(ii) Since X is recursively compact, by Definition 3.21 and Proposition 3.28, (X, ρ) is a bounded
and complete metric space and (X, ρ, S) is a recursively precompact computable metric space.
Thus, by [HR09, Proposition 4.1.3], (P(X),Wρ) is complete and (P(X), Wρ, QS) is also a com-
putable metric space.

Since (X, ρ, S) is a recursively precompact computable metric space, by [HR09, Lemma 2.12],
(P(X),Wρ,QS) is also a recursively precompact computable metric space. Thus, combined with
the completeness of (P,Wρ) and Proposition 3.28, this implies that P(X) is recursively compact
in (P(X),Wρ,QS). □

Let (X, ρ, S) be a computable metric space in which X is recursively compact. We endow the
measure space P(X) with the computable structure (P(X), Wρ, QS) given by Proposition 3.29.

The computability of measures is then defined via Definition 3.5. Specifically, a sequence
{µi}i∈I of measures in P(X) is a sequence of uniformly computable measures if it is uniformly
computable in (P(X), Wρ, QS), and a single measure µ ∈ P(X) is a computable measure if
the corresponding constant sequence consisting of µ is uniformly computable. As a remark, by
[HR09, Theorem 4.1.1]the above computability notion is equivalent to the one defined in [HR09,
Definition 4.1.2].

We now recall a key result on the computability of the integration function (cf. [HR09, Corol-
lary 4.3.2]).

Proposition 3.30. Let (X, ρ, S) be a computable metric space. Assume that X is recursively
compact in (X, ρ, S), and that {fi}i∈I is a sequence of uniformly computable functions fi : X →
R. Then the sequence {Ii}i∈I of functions Ii : P(X) → R defined by Ii(µ) := ⟨µ, fi⟩ for µ ∈ P(X)
is a sequence of uniformly computable functions.

Proof. Suppose S = {sk}k∈N. Since {fi}i∈I is a sequence of uniformly computable functions,
by Proposition 3.23 (iv) and Corollary 3.20, {supx∈X fi(x)}i∈I is a sequence of uniformly up-
per semi-computable real numbers. Note that {sk}k∈N is a sequence of uniformly computable
points. Then it follows from Definitions 3.5 and 3.14 that {fi(sk)}(i,k)∈I×N is a sequence of uni-
formly computable real numbers. Hence, it is not difficult to derive from Definition 3.3 that
{supk∈N fi(sk)}i∈I is a sequence of uniformly lower semi-computable real numbers. Since {sk :
k ∈ N} is dense in X and fi is a continuous function on X, we have supx∈X fi(x) = supk∈N fi(sk)
for each i ∈ I. Hence, by Corollary 3.20, we obtain that {supx∈X fi(x)}i∈I is a sequence of
uniformly computable real numbers. Thus, by [HR09, Corollary 4.3.2], it follows from the uni-
form computability of {fi}i∈I that the function I : P(X) × I → R defined by I(µ, i) := Ii(µ)
is computable. Therefore, by Definition 3.14, we obtain that {Ii}i∈I is a sequence of uniformly
computable functions. □

As an immediate corollary of Definition 3.18 and Proposition 3.30, we have the following result.

Corollary 3.31. Let (X, ρ, S) be a computable metric space. Assume that X is recursively
compact in (X, ρ, S), and that {fi}i∈I is a sequence of uniformly upper (resp. lower) semi-
computable functions fi : X → R. Then the sequence {Ii}i∈I of functions Ii : P(X) → R given
by Ii(µ) := ⟨µ, fi⟩ is a sequence of uniformly upper (resp. lower) semi-computable functions.

Finally, we consider a family of computable functions as follows.

Definition 3.32. Let (X, ρ) be a metric space. Consider arbitrary r ∈ R, ϵ > 0, and u ∈ X.
Then the function gu,r,ϵ : X → R given by

gu,r,ϵ(x) :=
(
1− (1/ϵ)(ρ(x, u)− r)+

)+
, for x ∈ X, (3.1)

is called a hat function.
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If r > 0, then gu,r,ϵ is a (1/ϵ)-Lipschitz function that equals 1 in the closed ball B(u, r) and 0

outside the ball B(u, r+ ϵ), and lies strictly between 0 and 1 in the annulus B(u, r+ ϵ)∖B(u, r).
The following result indicates that the characteristic function of a lower semi-computable open

set is a lower semi-computable function.

Proposition 3.33. Let (X, ρ, S) be a computable metric space. Assume that {Ui}i∈I is a se-
quence of uniformly lower semi-computable open sets. Then there exists a sequence {hn,i}(n,i)∈N×I

of uniformly computable functions hn,i : X → R such that for each i ∈ I, the following properties
are satisfied:

(i) For each x ∈ X, {hn,i(x)}n∈N is non-decreasing and converges to 1Ui(x) as n → +∞.

(ii) For each n ∈ N, hn,i(x) ⩾ 0 for each x ∈ X and hn,i(x) = 0 for each x /∈ Ui.

Proof. Suppose S = {sn}n∈N. Let {qn}n∈N (resp. {Dn}n∈N) be an effective enumeration of Q
(resp. the extended ideal balls in (X, ρ, S)). Then there exist three recursive functions f : N → N,
u : N → N, and v : N → N such that Dn = B

(
sf(n),

u(n)−1
v(n)

)
for each n ∈ N. Since {Ui}i∈I

is uniformly lower semi-computable open, by Definition 3.7, there exists a recursive function

l : N × I → N such that Ui =
⋃

n∈NDl(n,i) for each i ∈ I. Writing wm,i,n := u(l(m,i))−1
v(l(m,i)) − 1

n , we

define hn,i : X → R by

hn,i(x) := max
{
gsf(l(m,i)),wm,i,n,1/n(x) : m ∈ N ∩ [1, n]

}
for all n ∈ N, i ∈ I, and x ∈ X.

By (3.1) and Definition 3.2, it follows that {hn,i}(n,i)∈N×I is a sequence of uniformly computable
functions which satisfies properties (i) and (ii). □

The following result is also useful to describe the computability of subsets of P(X).

Proposition 3.34. Let (X, ρ, S) be a computable metric space in which X is recursively compact.
Assume that H and L are two nonempty recursively enumerable sets with L ⊆ I×H, {Ui,h}(i,h)∈L
is a sequence of uniformly lower semi-computable open sets in (X, ρ, S), and {ri,h}(i,h)∈L is a
sequence of uniformly computable real numbers. Define, for each i ∈ I, Li := {(i, h) ∈ L : h ∈ H}
and Ki := {µ ∈ P(X) : µ(Ui,h) ⩽ ri,h for each (i, h) ∈ Li}. Then {Ki}i∈I is uniformly recursively
compact in (P(X), Wρ, QS).

Proof. Define {Ii,h}(i,h)∈L by Ii,h(µ) := µ(Ui,h) for all (i, h) and µ ∈ P(X). Since {Ui,h}(i,h)∈L is
uniformly lower semi-computable open, by Proposition 3.33 and Definition 3.18, {1Ui,h

}(i,h)∈L is
a sequence of uniformly lower semi-computable functions. Hence, by Corollary 3.31, the sequence
{Ii,h}(i,h)∈L is a sequence of uniformly lower semi-computable functions. Since {ri,h}(i,h)∈L is a se-
quence of uniformly computable real numbers, {(ri,h,+∞)}(i,h)∈L is a sequence of uniformly lower
semi-computable open sets. Combined with the uniform lower semi-computability of {Ii,h}(i,h)∈L,
by Proposition 3.19, this implies that the sequence {Ui,h}(i,h)∈L defined by Ui,h := {µ ∈ P(X) :
Ii,h(µ) > ri,h} for each (i, h) ∈ L is a sequence of uniformly lower semi-computable open sets.
Hence, by Proposition 3.10,

{⋃
(i,h)∈Li

Ui,h

}
i∈I is a sequence of uniformly lower semi-computable

open sets. Note that by the definition of {Ki}i∈I , Ki = P(X) ∖
(⋃

(i,h)∈Li
Ui,h

)
for each i ∈ I.

Since X is recursively compact, by Proposition 3.29, P(X) is recursively compact. Therefore, by
Proposition 3.23 (iii), {Ki}i∈I is uniformly recursively compact. □

The following proposition follows immediately from the Stone–Weierstrass theorem and the
dominated convergence theorem.

Proposition 3.35. Let (X, ρ, S) be a computable metric space, and X be a recursively com-
pact set in (X, ρ, S). Then there exists a sequence {τn}n∈N of uniformly computable functions
τn : X → R such that {τn : n ∈ N} is dense in C(X). Hence, µ, ν ∈ M(X), µ(A) ⩾ ν(A) for
each A ∈ B(X) if and only if

〈
µ, τ+n

〉
⩾

〈
ν, τ+n

〉
for each n ∈ N. by (3.2),
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Proof. First, we assume that {τn : n ∈ N} is dense in C(X) and consider two arbitrary measure
µ, ν ∈ M(X). Now we demonstrate that µ(A) ⩾ ν(A) for each A ∈ B(X) if and only if〈
µ, τ+n

〉
⩾

〈
ν, τ+n

〉
for each n ∈ N. Hence, since {τn : n ∈ N} is dense in C(X), by the Dominated

Convergence Theorem,
〈
µ, τ+n

〉
⩾ ⟨ν, τ+n ⟩ for each n ∈ N if and only if

〈
µ, τ+

〉
⩾

〈
µ, τ+

〉
for

each τ ∈ C(X). Note that M(X) is the dual space of C(X). Then
〈
µ, τ+

〉
⩾

〈
µ, τ+

〉
for each

τ ∈ C(X) if and only if µ(A) ⩾ ν(A) for each A ∈ B(X).
Now we construct a sequence {τn}n∈N of uniformly computable functions τn : X → R such that

{τn : n ∈ N} is dense in C(X). Let F0(S) :=
{
gsm,p/q,1/n : p, q, m, n ∈ N

}
and E(S) be the

smallest (in the sense of inclusion) set of functions containing F0(S) and the constant function
1X , closed under a finite number of operators from the following list: additions, multiplications,
and scalar multiplications with rational numbers. By Stone–Weierstrass theorem (see e.g., [Fo99,
Theorem 4.45]), it immediately follows from the above definition of E(S) that E(S) is dense in
C(X).

Finally, we give an effective enumeration of E(S). Indeed, since N∗ is a recursively enumerable
set, there exists an enumeration {τn}n∈N of E(S) and a corresponding algorithm that, for each n ∈
N, on input n, outputs the expression of the function τn. Therefore, it follows from Definitions 3.32
and 3.14 that {τn}n∈N is a sequence of uniformly computable functions. □

For a compact metric space (X, ρ), a Borel-measurable transformation T : X → X, we say
that A ⊆ X is admissible (for T ) if A, T (A) ∈ B(X) and T |A is injective. Given a Borel subset
Y ⊆ X, define

M(X,T ;Y ) :=
{
µ ∈ P(X) : µ

(
T−1(A) ∩ Y

)
⩽ µ(A) for each Borel A ⊆ X

}
. (3.2)

The following result indicates the recursive compactness of the set M(X,T ;Y ) (cf. [BHLZ25,
Lemma 4.12]).

Proposition 3.36. Let (X, ρ, S) be a computable metric space in which X is recursively compact,
and {Ui}i∈I be a sequence of uniformly lower semi-computable open sets. Assume that {Ti}i∈I
is a sequence of uniformly computable functions Ti : X → X with respect to {Ui}i∈I . Then
{M(X,Ti;Ui)}i∈I is uniformly recursively compact in (P(X), Wρ, QS). In particular, if {Ti}i∈I
is a sequence of uniformly computable functions, then {M(X,Ti)}i∈I is uniformly recursively
compact.

Proof. Since {Ui}i∈I is uniformly lower semi-computable open, by Proposition 3.33,
{
1Ui

}
i∈I is

a sequence of uniformly lower semi-computable functions. By Proposition 3.35, there exists a
sequence {τn}n∈N of uniformly computable functions τn : X → R such that {τn : n ∈ N} is dense
in C(X). Hence, by (3.2), we obtain that

M(X,Ti;Ui) =
⋂
n∈N

{
µ ∈ P(X) :

〈
µ,

(
τ+n ◦ Ti

)
· 1Ui

〉
⩽

〈
µ, τ+n

〉}
for each i ∈ I. (3.3)

Since {τn}n∈N is a sequence of uniformly computable functions, and {Ti}i∈I is a sequence of
uniformly computable functions with respect to {Ui}i∈I , by Propositions 3.17, we obtain that
{τ+n ◦ Ti}(n,i)∈N×I is a sequence of uniformly computable functions with respect to {Ui}i∈I .
Hence, since τ+n is nonnegative function for each n ∈ N, it follows from uniformly lower semi-
computability of {Ui}i∈I and

{
1Ui

}
i∈I and Definition 3.18 that

{(
τ+n ◦ Ti

)
· 1Ui

}
(n,i)∈N×I

is a

sequence of uniformly computable functions. Thus, since R+ is a lower semi-computable open
set, by Proposition 3.30, the sequence {Vn,i}(n,i)∈N×I is a sequence of uniformly lower semi-

computable open sets, where Vn,i :=
{
µ ∈ P(X) :

〈
µ,

(
τ+n ◦ Ti

)
· 1Ui

〉
>

〈
µ, τ+n

〉}
for all n ∈ N

and i ∈ I. Thus, by Proposition 3.10,
{⋃

n∈N Vn,i

}
i∈I is uniformly lower semi-computable open.

Since X is recursively compact, by Proposition 3.29, P(X) is recursively compact. Therefore,
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by Proposition 3.23 (iii) and (3.3), we obtain that {M(X,Ti;Ui)}i∈I is uniformly recursively
compact. □

3.7. Computability over the Riemann sphere.

Proposition 3.37. Let S
(
Ĉ
)
:= {sn}n∈N be an enumeration of Q

(
Ĉ
)
:= {a+ bi : a, b ∈ Q} such

that there exists an algorithm that for each n ∈ N, upon input n, outputs p1, q1, r1, p2, q2, r2 ∈ N
with sn = (−1)r1 p1

q1
+ (−1)r2 p2

q2
i. Then

(
Ĉ, σ, S

(
Ĉ
))

is a computable metric space in which Ĉ is

recursively compact, where σ is the chordal metric on Ĉ.

Proof. Since Q
(
Ĉ
)
is dense in

(
Ĉ, σ

)
. Then Definition 3.4 (i) holds. By the definition of S

(
Ĉ
)
,

Definition 3.4 (ii) holds. Moreover, by the definition of the chordal metric σ, {σ(sm, sn)}(m,n)∈N2

is a sequence of uniformly computable real numbers, hence, Definition 3.4 (iii) holds. Thus,(
Ĉ, σ, S

(
Ĉ
))

is a computable metric space. By Definition 3.27,
(
Ĉ, σ, S

(
Ĉ
))

is recursively pre-

compact. Combined with the completeness of (X,σ), by Proposition 3.28, this implies that Ĉ is
a recursively compact set. □

Proposition 3.38. There exists an algorithm that satisfies the following property:
For each m ∈ N, each n ∈ N, and each complex polynomial p of degree m, this algorithm

outputs a sequence {qi}mi=1 of integers satisfying that if x1, x2, . . . , xm are all the zeros of the
map p (counting with multiplicity), then there exists a permutation σ on {1, 2, . . . , m} such that
σ
(
uqσ(i)

, xi
)
< 2−n for each integer 1 ⩽ i ⩽ m, where

{
uj
}
j∈N is the effective enumeration of the

set Q
(
Ĉ
)
, after we input the following data in this algorithm:

(i) an algorithm Ap computing all the coefficients of the polynomial p,

(ii) the integer n.

Proof. Let {si}i∈N be an effective enumeration of the set {a + bi : a, b ∈ Q}. Now we design an
algorithm M( · , · ) satisfying the following property:

For each polynomial Q, there exists a zero z0 of Q satisfying that for each m ∈ N, M
(
AQ,m

)
outputs a point lm ∈ Q

(
Ĉ
)
with σ(lm, z0) < 2−m after we input an algorithm AQ computing all

the coefficients of the polynomial Q and the integer m.
First, we use the algorithm AQ to compute the sequence {Q′(si)} and select a subsequence

{s̃i}i∈N of {si}i∈N of all the ideal points s̃i with Q′(s̃i) ̸= 0. Then we define two sequences
{γ(Q, i)}i∈N and {β(Q, i)}i∈N by

γ(Q, i) := sup
k⩾2

∣∣∣∣Q(k)(s̃i)

k!Q′(s̃i)

∣∣∣∣ 1
k−1

and β(Q, i) :=

∣∣∣∣ Q(s̃i)

Q′(s̃i)

∣∣∣∣. (3.4)

Since there exist finitely many roots for the rational map Q′ and {si}i∈N is dense in C, {s̃i}i∈N
is also dense in C. Combining with the fact that β(Q, ξ) = 0 for each root ξ ∈ C of Q, we can
enumerate the sequence {s̃i}i∈N and find i0 ∈ N with α(Q, i0) := β(Q, i0)γ(Q, i0) < α0 (here we
can select α0 := 0.03, see Remark 6 of [BCSS98, Section 8.2]). Next, compute an integer km with

km > log2(m+ 4 + log2(β(Q, i0))). (3.5)

Hence, by Theorem 2 of [BCSS98, Section 8.2], there exists a zero z0 ∈ C of Q satisfying that∣∣N t
Q(s̃i0)− z0

∣∣ ⩽ |s̃i0 − z0|
22t−1

⩽
2β(Q, i0)

22t−1
for each t ∈ N.

Here NQ(z) := z − Q(z)
Q′(z) for each z ∈ C. Combining with (3.5), this implies that∣∣Nkm

Q (s̃i0)− z0
∣∣ ⩽ 2β(Q, i0)

22km−1
<

2β(Q, i0)

2m+3+log2(β(Q,i0))
=

1

2m+2
. (3.6)
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Finally, we use the algorithmAQ to compute and output a point lm ∈ Q
(
Ĉ
)
with

∣∣lm−Nkm
Q (s̃i0)

∣∣ <
2−m−2. It follows immediately from the definition of the chordal metric σ on Ĉ (see Section 2)
that σ(z, w) ⩽ 2|z − w| for each pair of z, w ∈ C. Hence, by (3.6),

σ(lm, z0) ⩽ 2|lm − z0| ⩽ 2
(∣∣lm −Nkm

Q (s̃i0)
∣∣+ ∣∣Nkm

Q (s̃i0)− z0
∣∣) < 2−m.

So far we have designed the algorithm M(·, ·).
Next, we come back to the proof of the original statement. Fix an integer n and a complex

polynomial p of degree n. First, we can use the algorithm M
(
Ap, ·

)
to compute a zero of the

polynomial p, say z0. Then we consider the map p(z) := p(z)
z−z0

. Since p(z0) = 0, p is a polynomial
of degree n − 1. Now we claim that we can compute all the coefficients of the polynomial p
from the point z0 and all the coefficients of the polynomial p. Indeed, if p(z) =

∑n
i=0 aiz

i and

p(z) =
∑n−1

i=0 biz
i, then it is not hard to see that bi = ai+1+ z0bi+1 for each integer 0 ⩽ i ⩽ n− 1,

where bn is set to be 0. Hence, we obtain an algorithm Ap computing all the coefficients of p.
Then we can use the algorithm M

(
Ap, ·

)
to compute a zero of the polynomial p, i.e., a new zero

of the polynomial p. Therefore, we can compute all the zeros of p (counting with multiplicity)
recursively. □

4. Ergodic theory

We review basic concepts from ergodic theory. For more detailed discussions, we refer the
reader to [Wa82, Section 4].

Let (X,B, µ) be a probability space. A partition ξ = {Ah : h ∈ H} of (X,B, µ) is a disjoint
collection of elements of B whose union is X, where H is a countable index set. For each
pair of partitions ξ = {Ah : h ∈ H} and η = {Bl : l ∈ L} of X, their join is the partition
ξ ∨ η := {Ah ∩Bl : h ∈ H, l ∈ L}.

Assume that T : X → X is a measure-preserving transformation of (X,B, µ). Consider a
partition ξ = {Ah : h ∈ H} of X. For each n ∈ N, T−n(ξ) denotes the partition

{
T−1(Ah) :

h ∈ H
}
, and ξnT denotes the join ξ ∨ T−1(ξ) ∨ · · · ∨ T−(n−1)(ξ). The entropy of ξ is Hµ(ξ) :=

−
∑

h∈H µ(Ah) log(µ(Ah)) ∈ [0,+∞], where 0 log 0 is defined to be zero. One can show that if
Hµ(ξ) < +∞, then lim

n→+∞
Hµ(ξ

n
T )/n exists (see e.g. [Wa82, Chapter 4]). We denote this limit

by hµ(T, ξ) and call it the measure-theoretic entropy of T relative to ξ. The measure-theoretic
entropy of T for µ is defined as

hµ(T ) := sup{hµ(T, ξ) : ξ is a partition of X with Hµ(ξ) < +∞}. (4.1)

We now introduce thermodynamic formalism, a particular branch of ergodic theory. The main
objects of study are the topological pressure and equilibrium states (see e.g. [PU10, Wa82]; for
the general Borel-measurable setting used in Approach II, see e.g. [IT10, Definition 1.1], [DeT17,
Section 2.3], and [DoT23, Chapter 1.4]).

Let (X, ρ) be a compact metric space, T : X → X be a Borel-measurable transformation such
that M(X,T ) ̸= ∅, and ϕ : X → [−∞,+∞] be a Borel function. Then the topological pressure of
the potential ϕ with respect to the transformation T is given by

P (T, ϕ) := sup
{
hµ(T ) + ⟨µ, ϕ⟩ : µ ∈ M(X,T ) and ⟨µ, ϕ⟩ > −∞

}
. (4.2)

A measure µ ∈ M(X,T ) that attains the supremum in (4.2) is called an equilibrium state for
the transformation T and the potential ϕ. Denote the set of all such measures by E(T, ϕ). In
particular, when the potential ϕ is the constant function 0, we denote htop(T ) := P (T, 0) and say
that a measure µ ∈ M(X,T ) is a measure of maximal entropy of T if µ ∈ E(T, 0).

Definition 4.1 (Jacobian). Let (X, ρ) be a compact metric space, and T : X → X be a Borel-
measurable transformation. We say that A ⊆ X is admissible (for T ) if A, T (A) ∈ B(X), and
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T |A is injective. Suppose J : X → [0,+∞) is a Borel function, µ ∈ P(X), and E ∈ B(X) with
µ(E) = 1. Then J is said to be a Jacobian on E for T with respect to µ if for all admissible sets
A ⊆ E,

µ(T (A)) =

∫
A
J dµ.

Moreover, we say that J is a Jacobian for T with respect to µ if there exists Ẽ ∈ B(X) with

µ
(
Ẽ
)
= 1 such that J is a Jacobian on Ẽ for T with respect to µ.

Recall that P(X;Y ) = {µ ∈ P(X) : µ(Y ) = 1} for Y ∈ B(X). We state below the hypotheses
under which we will develop our theory in this section.

Definition 4.2. We say that the sextuple (X, ρ, T, Y, {Yk}k∈N, µ) is admissible if it has the
following properties:

(i) (X, ρ) is a compact metric space.

(ii) T : X → X is a Borel-measurable transformation.

(iii) {Yk}k∈N is a sequence of pairwise disjoint admissible sets for T .

(iv) Y =
⋃

k∈N Yk.

(v) µ ∈ M(X,T ) ∩ P(X;Y ).

The following proposition states the uniqueness of the Jacobian and provides a lower bound
for the measure-theoretic entropy in terms of the Jacobian.

Proposition 4.3. Let (X, ρ, T, Y, {Yk}k∈N, µ) be admissible. Assume that J : X → [0,+∞) is
a Jacobian for T with respect to µ. Then J(x) ⩾ 1 for µ-a.e. x ∈ X, and hµ(T ) ⩾ ⟨µ, log(J)⟩.
Moreover, for each Borel function J̃ : X → [0,+∞), J̃ is a Jacobian for T with respect to µ if

and only if J(x) = J̃(x) for µ-a.e. x ∈ X.

The lower bound given above is a classical result in ergodic theory known as the Rokhlin en-
tropy formula. We refer the reader to [Sa99, Theorem 4.2] for a version for topological Markov
shifts and to [Co12, Corollary 12.1] for a version for finite admissible partitions. The uniqueness
of the Jacobian immediately follows from [Ro49, Theorem 2.7], [PU10, Definition 2.9.2 & Propo-
sition 2.9.5].

Proposition 4.3 is the so-called Rokhlin entropy formula (see [Sa99, Theorem 4.2] for its topo-
logical Markov shift version and [Sa99, Section 4.1.3] for its proof). Now we establish it in our
context.

Let
(
X, ρ, T, Y, {Yk}k∈N, µ

)
be admissible. Let µ be the completion of µ. Then by [Ro49,

Theorem 2.7], the compact metric space (X, ρ) equipped the complete measure µ is a Lebesgue
space in the sense of V. Rokhlin. Moreover, according to [PU10, Definition 2.9.2] (or an equiv-
alent definition of essentially countable to one endomorphisms in [Pa69, Subsection 10.1]), T is
essentially countable to one. We omit V. Rokhlin’s definition of Lebesgue spaces and essentially
countable to one endomorphisms here and refer the reader to [Ro49, Section 2], since the only
result we will use about them are the following result on Jacobians.

Proposition 4.4. Let (X, B, µ) be a Lebesgue space, T : X → X be an essentially countable to
one endomorphism, and µ ∈ M(X,T ). Let J : X → [0,∞) be a Jacobian for T with respect to
µ. Then Hµ(ϵ|T−1(ϵ)) =

∫
log J dµ, where ϵ denotes the point partition of X, and Hµ(ϵ|T−1(ϵ))

denotes the conditional entropy of ϵ given the smallest σ-algebra which contains T−1(ϵ).

This follows from [PU10, Theorem 2.9.6], [Pa69, Lemma 10.5], and [Pa69, Definition 4.2]. Now
we complete the proof of Proposition 4.3.
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Proof of Proposition 4.3. First, we show that J(x) ⩾ 1 for µ-a.e. x ∈ X. Indeed, Since J is a
Jacobian for T with respect to µ, by Definition 4.1, there exists E ∈ B(X) with µ(E) = 1 such that
J is a Jacobian on E for T with respect to µ. Hence, since µ ∈ M(X,T ) and Y =

⋃
k∈N Yk, for each

Borel A ⊆ E∩Y , we have
∫
AJ dµ =

∑
k∈N

∫
A∩Yk

J dµ =
∑

k∈N µ(T (A∩Yk)) ⩾
∑

k∈N µ(A∩Yk) =

µ(A). Hence, J(x) ⩾ 1 for µ-a.e. x ∈ E ∩ Y . Then by µ ∈ P(X;Y ), we obtain that J(x) ⩾ 1 for
µ-a.e. x ∈ X.

Now we show hµ(T ) ⩾ ⟨µ, log(J)⟩. Let µ be the completion of the measure µ. Then by
Definition 4.1, µ ∈ M(X,T ) and J is a Jacobian for T with respect to µ. Since (X, ρ) is compact
metric space, by [Ro49, Theorem 2.7], (X, B, µ) is a Lebesgue space, where B denotes the σ-
algebra containing all µ-measurable sets. Since T satisfies Assumption 1 (ii) and (iii), by [PU10,
Definition 2.9.2], T is an essentially countable to one endomorphism. By Proposition 4.4, we
have Hµ(ϵ|T−1(ϵ)) = ⟨µ, log(J)⟩ = ⟨µ, log(J)⟩. Note that ϵ is an invariant partition, i.e., T−1(ϵ)
is coarser than ϵ. Then by [Ro67, Section 7], we have hµ(T, ϵ) = Hµ(ϵ|T−1(ϵ)). By [Ro67,
Section 9], hµ(T ) ⩾ hµ(T, ϵ). Since µ is the completion of the measure µ, by (4.1), we have
hµ(T ) = hµ(T ). Thus, we obtain that hµ(T ) = hµ(T ) ⩾ hµ(T, ϵ) = Hµ(ϵ|T−1(ϵ)) = ⟨µ, log(J)⟩.

Next, we assume that J̃ : X → [0,+∞) is a Jacobian on Ẽ for T with respect to µ. Then we

have
∫
AJ dµ = µ(T (A)) =

∫
AJ̃ dµ for each admissible A ⊆ E ∩ Ẽ. Hence, by µ(E ∩ Ẽ) = 1, we

obtain that J(x) = J̃(x) for µ-a.e. x ∈ X.

Finally, we assume that J(x) = J̃(x) for µ-a.e. x ∈ X. Then for each admissible A ⊆ E, we

have µ(T (A)) =
∫
AJ dµ =

∫
AJ̃ dµ. Thus, J̃ is a Jacobian for T with respect to µ. □
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