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Abstract. We investigate the theory of thermodynamic formalism from the perspective of computable
analysis, with a special focus on the computability of equilibrium states. Specifically, we develop two
complementary general approaches to verify the computability of equilibrium states for nonuniformly
expanding computable dynamical systems. The first approach applies to dynamical systems whose
topological pressure functions admit effective approximations and whose measure-theoretic entropy
functions are upper semicontinuous. As a concrete application, we establish the computability of
the equilibrium states for Misiurewicz–Thurston rational maps with Hölder continuous potentials. The
second approach exploits prescribed Jacobians of equilibrium states through a local analysis and applies
to settings where the measure-theoretic entropy functions may lack upper semicontinuity.
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1. Introduction

The study of computability in dynamical systems lies at the intersection of mathematics, physics,
and computer science, and has become increasingly vital for understanding complex physical phenom-
ena through computational perspectives. A fundamental insight driving this field is that while chaotic
systems exhibit sensitive dependence on initial conditions, their typical statistical behaviors are of-
ten described by computable objects. This interplay between chaos and computability underscores a
fundamental principle: the more expansive and chaotic a system’s dynamics, the more tractable its
typical behavior becomes.
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This perspective builds on the well-established principle that higher dynamical complexity, par-
ticularly through uniform expansion or hyperbolicity, facilitates the analysis of associated dynamical
invariants. In such uniformly expanding systems, the dynamical mechanisms driving long-term be-
havior become sufficiently regular to facilitate effective computation of key quantities such as entropy,
pressure, and key invariant measures. Thus, the central challenge, and our primary focus, lies in
extending these computational methodologies to systems where uniform expansion fails.

Thermodynamic formalism emerges as the natural framework for studying chaotic dynamics from a
statistical viewpoint. This theory, which draws inspiration from statistical mechanics, was pioneered
by Ruelle, Sinai, Bowen, and others in the 1970s ([Do68, Si72, Bo75, Wa82]). Since its birth, ther-
modynamic formalism has been extensively applied in various classical contexts and has remained
at the frontier and core of research in dynamical systems. It focuses on equilibrium states, which
are invariant measures that maximize pressure functionals encoding both entropy1 and integrals of
potentials. Crucially, equilibrium states characterize the typical behavior of the dynamics and thus
possess central mathematical and physical significance. In many settings, equilibrium states describe
the weighted distribution of random backward orbits (see e.g. [HT03, Li18]), iterated preimages, and
periodic orbits.

In complex dynamics, Brolin–Lyubich measures [Bro65, Ly82] are measures of maximal entropy
for rational maps. A uniform algorithm to compute such measures was developed in [BBRY11]. This
complements the discovery of polynomials with computable coefficients but non-computable Julia sets,
as explored in the pioneering works of Braverman and Yampolsky [BY06, BY09], which can be traced
back to a question posed by Milnor (see [BY06, Section 1]). For further research on algorithmic aspects
of Julia sets, we refer the reader to recent works of Rojas and Yampolsky [RY21b] and Dudko and
Yampolsky [DY21] and references therein.

The computability of Brolin–Lyubich measures presents an apparent paradox. Intuitively, one
might expect a measure to contain more information than its support. However, computable analysis
reveals the existence of a computable invariant probability measure (the Brolin–Lyubich measure)
whose support is non-computable. Indeed, this paradox can be reconciled by interpreting these results
as reflecting distinct computability properties of the system from geometric and statistical perspec-
tives. From this statistical viewpoint, questions regarding the computability of equilibrium states via
thermodynamic formalism gain critical significance.

In this article, we study thermodynamic formalism from the point of view of computable analy-
sis, with a special focus on the computability of equilibrium states in dynamical systems. Classical
hyperbolic systems admit well-developed techniques and are generally regarded as well-understood.
By contrast, nonuniformly hyperbolic systems resist conventional approaches. The relaxation of uni-
form expansion requirements therefore represents a fundamental challenge in dynamical systems. Our
central contribution lies in demonstrating that statistical computability can coexist with dynamical
complexity, even in nonuniformly hyperbolic regimes.

We develop two complementary approaches that establish fundamental links between the com-
putability of thermodynamic quantities and equilibrium states. Each approach offers distinct advan-
tages and ranges of applicability, designed to cover a broad class of dynamical systems.

The first approach utilizes the set of tangent functionals to the topological pressure function to link
the computability of the topological pressure to that of the equilibrium state. This method is suitable
for dynamical systems where the measure-theoretic entropy map is upper semicontinuous and the
topological pressure function can be effectively approximated. For dynamical systems whose measure-
theoretic entropy functions may lack upper semicontinuity, we implement the second approach, which

1The concepts of entropy in dynamical systems have their roots in the early works on the notions of entropy by
Boltzmann and Gibbs (statistical mechanics, 1875), von Neumann (quantum mechanics, 1932), and Shannon (information
theory, 1948). These notions of entropy are all designed to describe the complexity of their respective systems or objects.
In recent years, there have been exciting developments and diverse applications of entropy and complexity theory, see
e.g. Braverman’s report at the International Congress of Mathematicians in 2022 [Bra23].
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establishes the computability of equilibrium states through local (rather than global) considerations.
The novelties of our second approach include the following two aspects: (i) on the thermodynamic
formalism side, using general transfer operators to study equilibrium states of full measure away from
singular points with prescribed Jacobians, and (ii) on the computable analysis side, the verification of
Jacobians away from singular points, and the construction of a recursively compact set of measures to
exclude atomic measures supported on singular points.

To demonstrate applications of these approaches, we focus on expanding Thurston maps as primary
case studies, whose ergodic theory has been actively studied. A Thurston map is a branched covering
map on a topological 2-sphere that is not a homeomorphism and satisfies the postcritically-finite
condition (i.e., every critical point has a finite forward orbit). Such maps play a central role in
the study of complex dynamics, and the most important examples are given by postcritically-finite
rational maps on the Riemann sphere2. Inspired by Sullivan’s dictionary and their interest in Cannon’s
Conjecture [Ca94], Bonk and Meyer [BM10, BM17], as well as Häıssinsky and Pilgrim [HP09], studied
a subclass of Thurston maps, called expanding Thurston maps, by imposing some additional condition
of weak expansion (see Definition 6.2).

Based on these works, ergodic theory for expanding Thurston maps has been actively investigated in
[BM10, BM17, HP09, Li15, Li17, Li18, LZ25, LSZ25, LS24a, LS24b]. In particular, the third-named
author [Li18] developed the thermodynamic formalism and investigated the existence, uniqueness,
and other ergodic properties of equilibrium states for expanding Thurston maps3. Notably, expanding
Thurston maps exhibit weak expansion; they are neither expansive nor h-expansive. Furthermore,
those with at least one periodic critical point are not even asymptotically h-expansive [Li15]. Re-
cent advances by the third-named and fourth-named authors [LS24b] further demonstrated that the
measure-theoretic entropy function is upper semicontinuous if and only if the expanding Thurston
map has no periodic critical points. Leveraging these results, we apply our methods to investigate the
computability of measures of maximal entropy and equilibrium states for expanding Thurston maps,
demonstrating the applicability of our two distinct approaches.

Our approaches to investigating the computability of equilibrium states extend way beyond the
setting of expanding Thurston maps. See the discussions below.

1.1. Main results. As mentioned earlier, two complementary approaches link the computability of
thermodynamic quantities to that of equilibrium states.

The first approach (Theorem 1.1) applies to systems with upper semicontinuous measure-theoretic
entropy functions. It shows that certain computability properties of the topological pressures guarantee
the computability of the equilibrium states, with a concrete application to Misiurewicz–Thurston
rational maps in Theorem 1.2. The second approach, established in Theorem 1.3, applies to systems
without relying on the upper semicontinuity of the entropy, where the computability of equilibrium
states arises from the computability of their prescribed Jacobians. As an application, we establish
the computability of the measures of maximal entropy for computable expanding Thurston maps with
computable critical points in Theorem 1.4.

We adopt the conventions and terminology for computable analysis from [We00] and refer the reader
to Section 3 for a more detailed introduction. Below, we introduce the uniformly computable systems
that form the setting for our approaches.

We say that the quintuple (X, ρ, S, {Xn}n∈N, {Tn}n∈N) is a uniformly computable system if the
following properties are satisfied:

2There has been active research on algorithmic aspects of Thurston maps. For example, Bonnet, Braverman, and
Yampolsky [BBY12] devised an algorithm to determine whether a Thurston map is Thurston equivalent to a rational
map; Hubbard and Schleicher [HS94], in the setting of quadratic rational maps, provided an algorithm that, given a
convenient description of the Thurston map, outputs the coefficients of the rational map; Selinger, Rafi, and Yampolsky
[SY15, RSY20] investigated the decidability of Thurston equivalence.

3cf. the monograph [Li17].
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(i) (X, ρ, S) is a computable metric space in which X is recursively compact.

(ii) Xn ⊆ X is open and Tn : X → X is a Borel-measurable function for each n ∈ N.
(iii) In (X, ρ, S), {Xn}n∈N is a sequence of uniformly lower semi-computable open sets and {Tn}n∈N

is a sequence of uniformly computable functions with respect to {Xn}n∈N.
Here the computable structure of metric spaces is given in Definition 3.4, the lower semi-computable

openness of a set is an effective version of openness given in Definition 3.7, and the recursive compact-
ness of a set is an effective version of compactness (with an additional algorithmic covering procedure);
see Definition 3.18. Moreover, the computability of functions is given in Definition 3.12.

In the first approach, we exploit the set of tangent functionals to the topological pressure function
P (T, ·) (see Section 4) at the potential ϕ and demonstrate that the computability of the equilibrium
state follows from certain computability properties of the topological pressure. We note that this set of
tangent functionals is naturally identified with a subset of the set P(X) of Borel probability measures
(see Remark 4.4). We denote by E(T, ϕ) the set of equilibrium state(s) for a map T and a potential
ϕ. We refer the reader to Subsection 3.1 for a detailed discussion on the computability of measures.

Theorem 1.1. Let (X, ρ, S, {Xn}n∈N, {Tn}n∈N) be a uniformly computable system with Xn = X for
all n ∈ N, and {ϕn}n∈N be a sequence of uniformly computable functions ϕn : X → R. Suppose Tn has
finite topological entropy, and the measure-theoretic entropy map ν 7→ hν(Tn) is upper semicontinuous
on M(X,Tn) for each n ∈ N. Assume that the following statements are true:

(i) There exists a sequence {ψn,i}(n,i)∈N2 of uniformly computable functions ψn,i : X → R such that

the closure Dn of Dn := {ψn,i : i ∈ N} in C(X) contains a neighborhood of ϕn for each n ∈ N
and {P (Tn, ψn,i)}(n,i)∈N2 is a sequence of uniformly upper semi-computable real numbers.

(ii) {P (Tn, ϕn)}n∈N is a sequence of uniformly lower semi-computable real numbers.

(iii) There exists a unique equilibrium state µn for Tn and ϕn for each n ∈ N.
Then {µn}n∈N is a sequence of uniformly computable measures.

Here the space M(X,Tn) of Tn-invariant Borel probability measures is equipped with the weak∗

topology, the computability properties of real numbers are recalled in Definitions 3.3 and 3.6, and the
computable structure on the space P(X) of Borel probability measures is specified in Proposition 3.26.

Applying Theorem 1.1, we establish the computability of the equilibrium states for computable
Misiurewicz–Thurston rational maps (i.e., postcritically-finite rational maps without periodic criti-
cal points which are computable) and computable Hölder continuous potentials. The existence and
uniqueness of the equilibrium state for an expanding Thurston map follow from Theorem 6.3.

Theorem 1.2. Let f : Ĉ → Ĉ be a computable Misiurewicz–Thurston rational map, σ be the chordal
metric, and α ∈ (0, 1]. Assume that {ϕn}n∈N is a sequence of uniformly computable functions on

Ĉ, and {Qn}n∈N is a sequence of uniformly computable real numbers. Suppose ϕn ∈ C0,α
(
Ĉ, σ

)
,

E(f, ϕn) = {µn}, and |ϕn|α,σ ⩽ Qn for each n ∈ N. Then {µn}n∈N is a sequence of uniformly
computable measures.

The computable structure
(
Ĉ, σ, S

(
Ĉ
))

for Ĉ is given in Proposition 6.5. Moreover, |ϕ|α,σ denotes

the Hölder constant of ϕ ∈ C0,α
(
Ĉ, σ

)
(see (2.1)).

It is worth noting that Theorem 1.1 can be applied to establish the computability of the equi-
librium states for a wide range of dynamical systems with a unique equilibrium state and an upper
semicontinuous measure-theoretic entropy map, such as rational maps with Hölder continuous hyper-
bolic potentials (see e.g. [DU91]). Due to space limitations, we focus on the current examples and
postpone further investigations to future work.

For many dynamical systems, the measure-theoretic entropy map may not be upper semicontinuous,
or verifying this property may be difficult. To overcome this issue, we establish a second approach by
considering the prescribed Jacobians for equilibrium states.
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For a compact metric space (X, ρ), a Borel-measurable transformation T : X → X, we say that
A ⊆ X is admissible (for T ) if A, T (A) ∈ B(X) and T |A is injective. Given a Borel subset Y ⊆ X,
and a Borel function J : X → [0,+∞), define

M(X,T ;Y ) :=
{
µ ∈ P(X) : µ

(
T−1(A) ∩ Y

)
⩽ µ(A) for each Borel A ⊆ X

}
, and (1.1)

M(X,T ;Y, J) :=

{
µ ∈ P(X) : µ(T (A)) ⩾

∫
A
J dµ for each admissible set A ⊆ Y for T

}
. (1.2)

Theorem 1.3. Let (X, ρ, S, {Xn}n∈N, {Tn}n∈N) be a uniformly computable system, and Yn be an
open subset of Xn for each n ∈ N. Assume that there exist two recursively enumerable sets K, L with
L ⊆ N ×K, and a sequence {Yn,k}(n,k)∈L of uniformly lower semi-computable open sets in (X, ρ, S)
with the properties that Yn,k is admissible for Tn, and Yn =

⋃
(n,k)∈Ln

Yn,k, where Ln := {(n, k) ∈ L :

k ∈ K} for each n ∈ N.
Assume that {Jn}n∈N is a sequence of uniformly lower semi-computable functions Jn : X → [0,+∞)

with respect to {Yn}n∈N satisfying that Jn is nonnegative on Yn and Borel for each n ∈ N. Suppose
there exists a sequence {Kn}n∈N of uniformly recursively compact sets in (P(X), Wρ, QS) such that

M(X,Tn;Yn, Jn) ∩ Kn = {µn} for each n ∈ N. (1.3)

Then {µn}n∈N is a sequence of uniformly computable measures.

By Theorem 5.6, in some settings (cf. Definition 5.2), the set defined in (1.2) describes the set of
equilibrium states. Moreover, as applications of Theorem 1.3, in Theorems 5.10 and 5.11, we construct
two corresponding families of uniformly recursively compact sets {Kn}n∈N satisfying the additional
assumptions for two classes of dynamical systems.

Theorem 1.3 extends the methodologies developed in [BBRY11, Theorem A] and [BHLZ25, Theorem
1.1], introducing new techniques to handle both nonuniform expansion and the possible failure of upper
semicontinuity of entropy. Compared to the previous results, our approach significantly broadens
applicability by relaxing the computability requirement on prescribed Jacobians to only lower semi-
computability.

To demonstrate the applicability of Theorem 1.3 while minimizing unnecessary technicalities, we
employ it to prove the computability of the measures of maximal entropy for computable expanding
Thurston maps. In fact, one can establish the computability of equilibrium states for these maps with
Hölder continuous potentials using the cone method adapted for computability as in [BHLZ25].

Theorem 1.4. Let σ be the chordal metric and f : Ĉ → Ĉ be an expanding Thurston map that is

computable in the computable metric space
(
Ĉ, σ, S

(
Ĉ
))
. Assume that all critical points of f are

computable. Then the measure of maximal entropy of f is a computable measure.

We provide examples of such expanding Thurston maps and apply Theorem 1.4 to them at the end
of Subsection 6.3. Even though the result in Theorem 1.4 is not uniform and considers only computable

expanding Thurston maps on Ĉ, Theorem 1.3 can indeed be leveraged to extend the above result to the
uniform computability of the equilibrium states of computable expanding Thurston maps on a general
topological 2-sphere S2. However, such applications would require a discussion on the computability
of visual metrics (see e.g. [BM17, Chapter 8]), which would take us too far astray from the core topic
of this article.

The conditions in Theorems 1.1 and 1.3 illustrate some methodological distinctions. Specifically,
Theorem 1.1 provides an efficient pathway to proving computability when equilibrium states are unique
and measure-theoretic entropy functions are regular. In contrast, Theorem 1.3 becomes useful for
systems with nonunique equilibrium states or those (potentially) lacking upper semicontinuous entropy,
though it demands more sophisticated analysis. Note that computable functions on some subsets are
always continuous on the corresponding subsets. Theorem 1.3 can be applied to some Borel-measurable
dynamical systems (not necessarily continuous on the whole space), for example, Pomeau–Manneville
maps with geometric potentials.
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In fact, Theorem 1.3 can be applied and further extended to study the computability of equilibrium
states with time complexity in the following settings:

(i) Pomeau–Manneville maps with geometric potentials.

(ii) Holomorphic endomorphisms of Pk with logq-continuous hyperbolic potential.

(iii) Nonuniformly expanding local diffeomorphism on smooth manifolds and Hölder continuous
potentials with not very large oscillation (see [BHLS25]).

We leave these investigations for future work.

1.2. Strategy and organization. In thermodynamic formalism, identifying equilibrium states often
hinges on verifying the identity P (T, ϕ) = hµ(T ) +

∫
ϕ dµ. From the perspective of computable anal-

ysis, computing the topological pressure P (T, ϕ) and the integral
∫
ϕ dµ is straightforward. The core

difficulty lies in evaluating the measure-theoretic entropy function µ 7→ hµ(T ), which lacks universal
computational methods.

Our approaches reflect two distinct strategies for addressing this challenge. The first approach
applies to dynamical systems where the measure-theoretic entropy hµ(T ) coincides with its upper

semicontinuous regularization hµ(T ). Under this hypothesis, we use convex analysis to characterize
the set of equilibrium states as the set of tangent functionals to the topological pressure function (see
Section 4). The second approach avoids relying on semicontinuity of entropy by instead investigating
Jacobians for equilibrium states, a technique motivated by Rokhlin’s formula (cf. Proposition 5.3).

The proofs of the two approaches (Theorems 1.1 and 1.3) follow the same general strategy: we prove
the recursive compactness of a subset K ⊆ E(T, ϕ). Then the assumption that K = {µ} implies that
the equilibrium state µ is computable (cf. Proposition 3.20 (i)). The strategy for identifying a compact
subset K ⊆ E(T, ϕ) can be summarized as follows: for some dynamical systems, the measure-theoretic
entropy has the following upper and lower bounds:

hµ(T ) ⩾ hµ(T ) ⩾
∫
log(Jµ) dµ,

where Jµ is a Jacobian of T . Hence, we obtain that

{µ ∈ M(X,T ) : hµ(T ) + ⟨µ, ϕ⟩ = P (T, ϕ)} ⊇ E(T, ϕ) ⊇ {µ ∈ M(X,T ) : ⟨µ, ϕ+ log(Jµ)⟩ = P (T, ϕ)}.
For simplicity, we denote the former (resp. latter) set by E1(T, ϕ) (resp. E2(T, ϕ)). Indeed, by results in
convex analysis (cf. Lemma 4.3 and Proposition 4.5), the set E1(T, ϕ) coincides with the set C(X)∗ϕ,PT

.

Moreover, by our investigations in ergodic theory (cf. Theorem 5.6), the set E2(T, ϕ) can be described
by M(X,T ;Y, J) (defined in (1.2)), where Y ⊆ X is a Borel set and J : X → R is a Borel function
satisfying some assumptions (indeed, E2(T, ϕ) ∩ P(X;Y ) coincides with M(X,T ;Y, J) ∩ M(X,T ) ∩
P(X;Y )). It is worth noting that the set E(T, ϕ) of equilibrium states may not be weak∗ compact.
However, the sets C(X)∗ϕ,PT

and M(X,T ;Y, J) are always weak∗ compact. Hence, we demonstrate

the recursive compactness of these sets instead of investigating E(T, ϕ) directly.
We now outline the proofs of the recursive compactness properties of C(X)∗ϕ,PT

and M(X,T ;Y, J).

For the set C(X)∗ϕ,PT
, by some results in convex analysis, it is the set of measures µ ∈ M(X,T )

such that ϕ is the minimizing point of the operator defined by h 7→ P (T, h) − ⟨µ, h⟩. Hence, the
recursive compactness of the set C(X)∗ϕ,PT

can be derived from some computability properties of the
topological pressure function. Moreover, due to the convexity of such operator, the conditions can be
further reduced to the computability properties of the topological pressure function near the potential
ϕ. For the set M(X,T ;Y, J), a local version of a method from [BBRY11, BHLZ25] is applied to check
if a Jacobian for T with respect to µ is greater than or equal to the given function J in the “good”
subset Y , which is a union of open and admissible sets. It is worth noting that we improve this method
and relax the requirements for the domains of computability of dynamical systems.

Moreover, in the proof of Theorem 5.6, the existence of singular points prevents the direct application
of Ruelle operators to characterize the prescribed Jacobians of equilibrium states. To address this,
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we instead use transfer operators to provide an equivalent description of the Jacobians of invariant
measures in Theorem 5.5. Combined with the Variational Principle, this yields Theorem 5.6, which
allows us to identify equilibrium states by verifying if a Jacobian for T is greater than the prescribed
function J in the “good” subset Y .

Finally, we summarize the two approaches as follows. In the global approach via convex analysis,
we assume the upper semicontinuity of the pressure function to ensure that E1(T, ϕ) = E(T, ϕ). In
the local approach via transfer operator and Jacobian, the main challenge is to construct a recursively
compact set K ⊆ P(X) that excludes measures with positive mass on a “bad” region. Since a
uniform construction of such a set K is not feasible for all systems, we hypothesize its existence in
Theorem 1.3 to obtain a general result, and provide explicit constructions for specific families in
Theorems 5.10, 5.11, and 1.4. More precisely, we consider the case where the “bad” regions are indeed
sets of finitely many points. In Theorem 5.10 we use a sequence of open sets containing these “bad”
regions to eliminate the mass supported on them, in Theorem 5.11 we investigate the dynamical
systems that are uniformly contracting near all the periodic singular points, and in Theorem 1.4 study
expanding Thurston maps, a family of maps which are uniformly expanding near all the periodic
singular points.

We now describe the structure of this article. After fixing some notation in Section 2, we review
some notions and results in computable analysis and ergodic theory in Section 3.

Section 4 focuses on the first (global) approach. We prove Theorem 1.1 by establishing the recursive
compactness of the set of tangent functionals to the topological pressure function at the potential with
upper semicontinuous entropy.

Section 5 is devoted to the second (local) approach as stated in Theorem 1.3, which uses the
prescribed Jacobian with respect to an equilibrium state. Through employing the transfer operators
to establish Theorem 5.6 (in Subsection 5.1), which characterizes an equilibrium state in terms of its
Jacobian, we complete the proof of Theorem 1.3 in Subsection 5.2. Theorems 5.10 and 5.11, presented
as consequences of Theorem 1.3, are stated in Subsection 5.3.

Section 6 examines the computability of the equilibrium states for expanding Thurston maps. We
first provide the definitions and properties of these maps in Subsection 6.1. Then in Subsection 6.2,
we apply Theorem 1.1 to demonstrate the computability of the equilibrium state for a Misiurewicz–
Thurston rational map and a Hölder continuous potential, thereby establishing Theorem 1.2. Finally,
Subsection 6.3 addresses a broader class of expanding Thurston maps whose measure-theoretic entropy
maps may lack upper semicontinuity. Here, we use Theorem 1.3 to study the measures of maximal
entropy and establish Theorem 1.4.

Acknowledgments. Q. H., Z. L., and X. S. were partially supported by Beijing Natural Science
Foundation (JQ25001 and 1214021) and National Natural Science Foundation of China (12471083,
12101017, 12090010, and 12090015). I. B. was partially supported by an NSERC Discovery grant.
Q. H. was also supported by Peking University Funding (7101303303 and 6201001846).

2. Notation

The chordal metric σ on the Riemann sphere Ĉ is defined as follows: σ(z, w) := 2|z−w|√
1+|z|2

√
1+|w|2

for

all z, w ∈ C, and σ(∞, z) = σ(z,∞) := 2√
1+|z|2

for all z ∈ C. Let S2 denote an oriented topological

2-sphere. We use N to denote the set of integers greater than or equal to 1 and N∗ :=
⋃

k∈NNk. We
write N0 := {0} ∪ N and N∗

0 := {0} ∪ N∗. We denote by Q+ (resp. R+) the set of all positive rational
(resp. real) numbers. The symbol log denotes the natural logarithm. For x ∈ R, we define ⌊x⌋ as the
greatest integer ⩽ x, ⌈x⌉ as the smallest integer ⩾ x, and x+ = (x)+ := max{x, 0}. For a function
f : X → R on a set X, we define f+ = (f)+ : X → R by f+(x) := (f(x))+ for each x ∈ X. The
cardinality of a set A is denoted by cardA.

Consider a map f : X → X on a set X. We write fn for the n-th iterate of f , and f−n := (fn)−1,
for each n ∈ N. We set f0 := idX , the identity map on X. For a real-valued function ϕ : X → R, we
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write Snϕ(x) = Sf
nϕ(x) :=

∑n−1
m=0 ϕ(f

m(x)) for x ∈ X and n ∈ N0. We omit the superscript f when
the map f is clear from the context. When n = 0, by definition S0ϕ = 0.

Let (X, d) be a metric space. We denote by B(X) the σ-algebra of all Borel subsets of X. For each
subset Y ⊆ X, we denote the diameter of Y by diamd Y := sup{d(x, y) : x, y ∈ Y }, the interior of Y
by int◦ Y , and the characteristic function of Y by 1Y .

For each r ∈ R and each x ∈ X, we denote the open (resp. closed) ball of radius r centered at x
by Bd(x, r) := {y ∈ X : d(x, y) < r}. For each r ∈ R and each nonempty set K ⊆ X, we define
d(x,K) := infy∈K d(x, y), and Bd(K, r) := {x ∈ X : d(x,K) < r}. We often omit the metric d in the
subscript when it is clear from the context.

For a compact metric space (X, d), we denote by C(X) the space of continuous functions from
X to R, and by M(X) (resp. P(X)) the set of finite signed Borel measures (resp. Borel probability
measures) on X. Let g : X → X be a Borel-measurable transformation. We denote by M(X, g) the set
of g-invariant Borel probability measures on X. Moreover, for each Borel subset C ∈ B(X), P(X;C)
denotes the set {µ ∈ P(X) : µ(C) = 1}. By the Riesz representation theorem, we can identify the
dual of C(X) with the space M(X). For µ ∈ M(X), we use ∥µ∥ to denote the total variation norm
of µ, suppµ to denote the support of µ, and

⟨µ, u⟩ :=
∫
u dµ

for each µ-integrable Borel function u on X. If we do not specify otherwise, we equip C(X) with the
uniform norm ∥ · ∥C(X) := ∥ · ∥∞, and equip M(X), P(X), and M(X, g) with the weak∗ topology.

The space of real-valued Hölder continuous functions with an exponent α ∈ (0, 1] on a compact
metric space (X, d) is denoted as C0,α(X, d). For each ϕ ∈ C0,α(X, d),

|ϕ|α,d := sup{|ϕ(x)− ϕ(y)|/d(x, y)α : x, y ∈ X, x ̸= y}. (2.1)

For a complete separable metric space (X, d), we recall the Wasserstein–Kantorovich metric Wd on
P(X) given by

Wd(µ, ν) := sup
{
|⟨µ, f⟩ − ⟨ν, f⟩| : f ∈ C0,1(X, d), |f |1,d ⩽ 1

}
. (2.2)

Note that for Borel probability measures in P(X), the convergence in Wd is equivalent to the conver-
gence in the weak∗ topology (see e.g. [Vi09, Corollary 6.13]).

3. Preliminaries

3.1. Computable analysis. We recall fundamental notions and results from recursion theory and
computable analysis.4 We present, in order, definitions and results concerning the computability of
real numbers, computable structures on metric spaces, computability of open sets, functions, compact
sets, and probability measures.

Computability over the reals. We begin by reviewing basic notations and concepts from classical
recursion theory; for an introduction, see e.g. [Bri94, Chapter 3].

Definition 3.1 (Effective enumeration and recursively enumerable set). Let S ⊆ N∗ be a
nonempty set. An effective enumeration of S is a sequence {xi}i∈N with S = {xi : i ∈ N} such that
there exists an algorithm that, for each i ∈ N, upon input i, outputs xi.

Moreover, a set I ⊆ N∗ is said to be a recursively enumerable set5 if I = ∅ or there exists an effective
enumeration of I.

For brevity, the symbol I denotes a nonempty recursively enumerable set throughout this subsection.
Note that Nk, for k ∈ N, and N∗ are all recursively enumerable sets by Definition 3.1.

4Our notion of algorithm is consistent with Type-2 machines defined in [We00, Definition 2.1.1].
5We emphasize that recursively enumerable sets in this article are subsets of N∗.
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Definition 3.2 (Partial recursive and recursive function). Let {in}n∈N be an effective enumer-
ation of I. We say that f : I → N∗

0 is partial recursive if there exists an algorithm that, for each n ∈ N,
on input n, outputs f(in) if f(in) ∈ N∗, and runs forever otherwise, namely, if f(in) = 0. We say that
f : I → N∗

0 is recursive if f is a partial recursive function with f(I) ⊆ N∗.

We now define the computability of real numbers.

Definition 3.3 (Computable real number). A real number x is called computable if there exist

three recursive functions f : N → N, g : N → N, and h : N → N such that
∣∣(−1)h(n)f(n)/g(n)−x

∣∣ < 2−n

for all i ∈ I and n ∈ N.
Let {xi}i∈I be a sequence of real numbers. We say that {xi}i∈I is a sequence of uniformly computable

real numbers if there exist three recursive functions f : N× I → N, g : N× I → N, and h : N× I → N
such that

∣∣(−1)h(n,i)f(n, i)/g(n, i)− xi
∣∣ < 2−n for all i ∈ I and n ∈ N.

Clearly, x ∈ R is computable if and only if {xi}i∈N defined by xi := x for all i ∈ N is uniformly
computable. For analogous concepts in the sequel, we will define the uniform sequence version and
regard the individual case as the special case of constant sequences.

Computable metric spaces.

Definition 3.4 (Computable metric space). A computable metric space is a triple (X, ρ, S)
satisfying that

(i) (X, ρ) is a separable metric space,

(ii) S = {sn}n∈N forms a countable dense subset {sn : n ∈ N} of X, and

(iii) {ρ(sm, sn)}(m,n)∈N2 is a sequence of uniformly computable real numbers.

The points in S are called ideal. Since N3 is recursively enumerable, the collection B := {B(si,m/n) :
i, m, n ∈ N} can be enumerated as {Bl}l∈N satisfying the following: there exists an algorithm that,
for each l ∈ N, upon input l, outputs i, m, n ∈ N with Bl = B(si,m/n). We call the elements in B
ideal balls and such an enumeration of B an effective enumeration of ideal balls in (X, ρ, S).

We then define the computability of points in a computable metric space.

Definition 3.5 (Computable point). Let (X, ρ, S) be a computable metric space with S = {si}i∈N,
and {xi}i∈I be a sequence of points in X. Then {xi}i∈I is called uniformly computable (in (X, ρ, S))
if there exists a recursive function f : N× I → N such that ρ

(
sf(n,i), xi

)
< 2−n for all n ∈ N and i ∈ I.

Moreover, a point x in X is computable (in (X, ρ, S)) if {xi}i∈N defined by xi := x for all i ∈ N is
uniformly computable.

We now specify the computable structure on R. Let SQ = {qn}n∈N be the enumeration of Q induced
by an effective enumeration of N3 via the mapping (a, b, c) 7→ (−1)ca/b. Note that {dR(qm, qn)}(m,n)∈N2

is a sequence of uniformly computable real numbers, where dR is the Euclidean metric. Then the triple(
R, dR, SQ

)
forms a computable metric space according to Definition 3.4. A similar construction

provides a computable structure for R+. In this article, we fix these as the standard computability
structures on R and R+. It is clear that under these structures, Definitions 3.3 and 3.5 are equivalent
for the computability of real numbers. That is, a sequence of reals is uniformly computable in one
sense if and only if it is in the other.

We also consider a weaker notion of computability over R that leverages its natural ordered structure.

Definition 3.6 (Semi-computable real number). Let {xi}i∈I be a sequence of real numbers.
We say that {xi}i∈I is uniformly lower (resp. upper) semi-computable if there exist three recur-
sive functions f : N × I → N, g : N × I → N, and h : N × I → N such that for each i ∈ I,{
(−1)h(n,i)f(n, i)/g(n, i)

}
n∈N is nondecreasing (resp. nonincreasing) and converges to xi as n→ +∞.

Moreover, a real number x is called lower (resp. upper) semi-computable if the sequence {xi}i∈N defined
by xi := x for each i ∈ N is uniformly lower (resp. upper) semi-computable.
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Lower semi-computable open sets. We define an effective version of open sets and collect some
relevant results.

Let (X, ρ, S) be a computable metric space. Let B be the set of ideal balls, and {Bl}l∈N be an
effective enumeration of ideal balls in (X, ρ, S). We define the set B0 := B∪{∅} of extended ideal balls
and an enumeration {Dl}l∈N of B0 such that D1 = ∅ and Dl = Bl−1 for each integer l ⩾ 2. We call
such an enumeration an effective enumeration of extended ideal balls in (X, ρ, S).

Definition 3.7 (Lower semi-computable open set). Let (X, ρ, S) be a computable metric space,
and {Dl}l∈N be an effective enumeration of extended ideal balls. Then a sequence {Ui}i∈I of open
sets in X is said to be uniformly lower semi-computable open (in (X, ρ, S)) if there exists a recursive
function f : N × I → N such that Ui =

⋃
n∈NDf(n,i) for each i ∈ I. Moreover, an open set U ⊆ X is

called lower semi-computable open (in (X, ρ, S)) if the sequence {Ui}i∈N defined by Ui := U for i ∈ N
is uniformly lower semi-computable open.

The above definition of a lower semi-computable open set differs slightly from the ones in [BBRY11,
Definition 3.4] and [BRY14, Definition 2.4]. In our definition, we use extended ideal balls, which
include the empty set ∅.

The term recursively open set in the literature (e.g. [GHR11, Subsection 2.2 and Definition 2.4] and
[HR09, Subsection 3.3]) is equivalent to the notion of lower semi-computable open set defined above.
A detailed discussion of this equivalence is provided in [He25, Subsection 3.3].

Note that we can algorithmically decide whether s ∈ B for each ideal point s ∈ S and each extended
ideal ball B ∈ B0. The following result then follows immediately from Definition 3.7 (see e.g. [He25,
Proposition 3.9]).

Proposition 3.8. Let (X, ρ, S) be a computable metric space with S = {sn}n∈N. Assume that {Ui}i∈I
is uniformly lower semi-computable open. Then there exists a recursively enumerable set E ⊆ N × I
such that {sn : (n, i) ∈ Ei} = {sn : n ∈ N} ∩ Ui, where Ei := {(n, i) ∈ E : n ∈ N} for each i ∈ I.

The following two results are two classical results in computable analysis which both follow imme-
diately from Definitions 3.1 and 3.7 (see e.g. [He25, Propositions 3.10 & 3.11]).

Proposition 3.9. Let (X, ρ, S) be a computable metric space. Assume that H and L are two
nonempty recursively enumerable sets with L ⊆ I ×H, and that {Ui,h}(i,h)∈L is uniformly lower semi-
computable open. Then {

⋃
{Ui,h : (i, h) ∈ Lh}}h∈H is uniformly lower semi-computable open, where

Lh := {(i, h) ∈ L : i ∈ I} for each h ∈ H. In particular, if {Ui}i∈I is uniformly lower semi-computable
open, then

⋃
i∈I Ui is lower semi-computable open.

Proposition 3.10. Let (X, ρ, S) be a computable metric space. Assume that {ri}i∈I is a sequence
of uniformly lower semi-computable real numbers and {xi}i∈I is uniformly computable in (X, ρ, S).
Then {B(xi, ri)}i∈I is uniformly lower semi-computable open.

Computability of functions. We begin with the definition of oracles for points.

Definition 3.11 (Oracle). Let (X, ρ, S) be a computable metric space with S = {si}i∈N, and x ∈ X.
We say that a function τ : N → N is an oracle for x if ρ(sτ(n), x) < 2−n for each n ∈ N.

With the above definition, computable functions can be defined as follows.

Definition 3.12 (Computable function). Let (X, ρ, S) and (X ′, ρ′, S ′) be computable metric
spaces with S = {sn}n∈N and S ′ = {s′n}n∈N. Assume that {in}n∈N is an effective enumeration of I,
and Ci ⊆ X for each i ∈ I. Then a sequence {fi}i∈I of functions fi : X → X ′ is called a sequence
of uniformly computable functions with respect to {Ci}i∈I if there exists an algorithm that, for all
l, n ∈ N, x ∈ Cin , and oracle τ for x, on input l, n, and τ , outputs m ∈ N with ρ′(s′m, fin(x)) < 2−l.
We often omit the phrase “with respect to {Ci}i∈I” when Ci = X for all i ∈ I. Moreover, a function
f : X → X ′ is said to be a computable function on C if {fi}i∈N, defined by fi := f for all i ∈ N, is a
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sequence of uniformly computable functions with respect to {Ci}i∈N defined by Ci := C for all i ∈ N.
We often omit the phrase “with respect to C” when C = X.

Computable functions serve as an effective version of continuous functions. The following result
provides examples of computable functions (see e.g. [We00, Examples 4.3.3 and 4.3.13.5]).

Example 3.13. The exponential function exp: R → R and the logarithmic function log : R+ → R are
computable functions.

We recall the following classical characterization of computable functions (cf. [RY21a, Proposi-
tion 5.2.14] and [BBRY11, Proposition 3.6]; see also [He25, Theorem 3.17]).

Proposition 3.14. Let (X, ρ, S) and (X ′, ρ′, S ′) be computable metric spaces. Suppose {B′
n}n∈N is

an effective enumeration of ideal balls in (X ′, ρ′, S ′). Given fi : X → X ′ and Ci ⊆ X for each i ∈ I,
the following statements are equivalent:

(i) The sequence {fi}i∈I is a sequence of uniformly computable functions with respect to {Ci}i∈I .

(ii) There exists a sequence {Un,i}(n,i)∈N×I of uniformly lower semi-computable open sets in (X, ρ, S)
such that f−1

i (B′
n) ∩ Ci = Un,i ∩ Ci for all i ∈ I and n ∈ N.

(iii) For each nonempty recursively enumerable set M and each sequence {V ′
m}m∈M of uniformly

lower semi-computable open sets, there exists a sequence {Wm,i}(m,i)∈M×I of uniformly lower

semi-computable open sets in (X, ρ, S) such that f−1
i (V ′

m) ∩ Ci = Wm,i ∩ Ci for all m ∈ M
and i ∈ I.

We now define a notion of weaker computability property for functions.

Definition 3.15 (Semi-computable function). Let (X, ρ, S) be a computable metric space, {in}n∈N
be an effective enumeration of I, and Ci ⊆ X for each i ∈ I. A sequence {fi}i∈I of functions fi : X → R
is a sequence of uniformly upper (resp. lower) semi-computable functions with respect to {Ci}i∈I if there
exists an algorithm that, for all l, n ∈ N, x ∈ Cin , and oracle τ for x, on input l, n, and τ , outputs
ql,n,τ ∈ Q such that for each n ∈ N, each x ∈ Cin , and each oracle τ for x, {ql,n,τ}l∈N is nonincreasing
(resp. nondecreasing) and converges to fin(x) as l → +∞. We often omit the phrase “with respect to
{Ci}i∈I” when Ci = X for each i ∈ I. Moreover, a function f : X → R is said to be an upper (resp.
a lower) semi-computable function on C if {fi}i∈N defined by fi := f for each i ∈ N, is a sequence of
uniformly upper (resp. lower) semi-computable functions with respect to {Ci}i∈N defined by Ci := C
for all i ∈ N. We often omit the phrase “with respect to C” when C = X.

The following proposition is an immediate consequence of Proposition 3.14 (see e.g. [He25, Theo-
rem 3.19]).

Proposition 3.16. Let (X, ρ, S) be a computable metric space, and SQ = {qn}n∈N. Given fi : X → R
and Ci ⊆ X for all i ∈ I, the following statements are equivalent:

(i) The sequence {fi}i∈I is a sequence of uniformly upper (resp. lower) semi-computable functions
with respect to {Ci}i∈I .

(ii) There exists a sequence {Un,i}(n,i)∈N×I of uniformly lower semi-computable open sets in (X, ρ, S)
such that f−1

i (Qn) ∩ Ci = Un,i ∩ Ci with Qn := (−∞, qn) (resp. Qn := (qn,+∞)) for all i ∈ I
and n ∈ N.

(iii) For each nonempty recursively enumerable set L and each sequence {rl}l∈L of uniformly com-
putable real numbers, there exists a sequence {Wl,i}(l,i)∈L×I of uniformly lower semi-computable

open sets in (X, ρ, S) such that f−1
i (Rl) ∩ Ci = Wl,i ∩ Ci with Rl := (−∞, rl) (resp. Rl :=

(rl,+∞)) for all l ∈ L and i ∈ I.

The following result indicates that the characteristic function of a lower semi-computable open set
is a lower semi-computable function (see e.g. [He25, Proposition 3.33]).
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Proposition 3.17. Let (X, ρ, S) be a computable metric space. Assume that {Ui}i∈I is uniformly
lower semi-computable open. Then there exists a sequence {hn,i}(n,i)∈N×I of uniformly computable
functions hn,i : X → R such that for each i ∈ I, the following properties are satisfied:

(i) For each x ∈ X, {hn,i(x)}n∈N is nondecreasing and converges to 1Ui(x) as n→ +∞.

(ii) For each n ∈ N, hn,i(x) ⩾ 0 for each x ∈ X and hn,i(x) = 0 for each x /∈ Ui.

Recursively compact sets and recursively precompact metric spaces. Here we recall the
definitions of recursive compactness and recursive precompactness. For a more detailed discussion, see
[GHR11, Section 2].

Definition 3.18 (Recursively compact set). Let (X, ρ, S) be a computable metric space with
S = {si}i∈N, and {il}l∈N be an effective enumeration of I. A sequence {Ki}i∈I of compact sets in X is
called uniformly recursively compact (in (X, ρ, S)) if there exists an algorithm that, for each n ∈ N,
each sequence {mn}pn=1 of integers, and each sequence {qn}pn=1 of positive rational numbers, upon
input, halts if and only if Kil ⊆

⋃p
n=1B(smn , qn). Moreover, a set K ⊆ X is called recursively compact

(in (X, ρ, S)) if the sequence {Ki}i∈N defined by Ki := K for each i ∈ N, is uniformly recursively
compact.

Note that for each compact set K and each function f : N → N, K ⊆
⋃

n∈NDf(n) if and only if

K ⊆
⋃k

n=1Df(n) for some k ∈ N. This implies the following result.

Proposition 3.19. Let (X, ρ, S) be a computable metric space. Suppose {hm}m∈N (resp. {ln}n∈N) is
an effective enumeration of a nonempty recursively enumerable set H (resp. L). Assume that {Kh}h∈H
is uniformly recursively compact and {Ul}l∈L is uniformly lower semi-computable open. Then there
exists an algorithm that, for all m, n ∈ N, upon input, halts if and only if Khm ⊆ Uln.

We collect some fundamental properties of recursively compact sets (cf. [GHR11, Propositions 1 & 3];
see also [He25, Proposition 3.23]).

Proposition 3.20. Let (X, ρ, S) be a computable metric space. Assume that X is recursively compact,
and {Ki}i∈I is uniformly recursively compact. Then the following statements are true:

(i) Let xi ∈ X for each i ∈ I. Then {xi}i∈I is uniformly computable if and only if the sequence
{{xi}}i∈I of singletons is uniformly recursively compact.

(ii) {X ∖Ki}i∈I is uniformly lower semi-computable open.

(iii) If {Ui}i∈I is uniformly lower semi-computable open, then {Ki∖Ui}i∈I is uniformly recursively
compact.

(iv) If {fi}i∈I is a sequence of uniformly lower (resp. upper) semi-computable functions fi : X → R
with respect to {Ki}i∈I , then {infx∈Ki fi(x)}i∈I (resp. {supx∈Ki

fi(x)}i∈I) is uniformly lower
(resp. upper) semi-computable.

(v) If {Ti}i∈I is a sequence of uniformly computable functions Ti : X → X with respect to {Ki}i∈I ,
then {Ti(Ki)}i∈I is uniformly recursively compact.

Next, we investigate whether the property of uniform computability for recursively compact sets is
preserved under the union and intersection.

Proposition 3.21. Let (X, ρ, S) be a computable metric space. Suppose X is recursively compact, H
and L are two nonempty recursively enumerable sets with L ⊆ I ×H, and {Ki,h}(i,h)∈L is uniformly
recursively compact. Denote Lh := {(i, h) ∈ L : i ∈ I} for each h ∈ H. Then the following statements
are true:

(i) {
⋂
{Ki,h : (i, h) ∈ Lh}}h∈H is uniformly recursively compact.

(ii) If the function F : H → N defined by F (h) := cardLh for h ∈ H is recursive, then {
⋃
{Ki,h :

(i, h) ∈ Lh}}h∈H is uniformly recursively compact.



COMPUTABLE THERMODYNAMIC FORMALISM 13

Proposition 3.21 (i) follows immediately from Proposition 3.9 and Proposition 3.20 (ii) and (iii).
Moreover, Proposition 3.21 (ii) follows from Definition 3.18. As a corollary of Proposition 3.21 (ii),
we obtain the following result, which is important in the proof of Theorem 1.4.

Corollary 3.22. Let (X, ρ, S) be a computable metric space. Assume that X is recursively compact,
T : X → X is a computable function, and {Ui}i∈I is uniformly lower semi-computable open. Then
{Vn,i}(n,i)∈N×I is uniformly lower semi-computable open, where Vn,i is defined inductively by setting

V1,i := Ui and Vn+1,i := T−1(Vn,i) ∩ Ui for each n ∈ N and each i ∈ I.

Proof. Since T is a computable function, by Definition 3.2, we obtain that {Tn}n∈N0 is a sequence
of uniformly computable functions. Then by Proposition 3.14, {T−n(Ui)}(n,i)∈N0×I is a sequence
of uniformly lower semi-computable open sets. Hence, since X is recursively compact, by Proposi-
tion 3.20 (iii), {X ∖ T−n(Ui)}(n,i)∈N0×I is a sequence of uniformly recursively compact sets.

Define L ⊆ N0 × N × I by L := {(m,n, i) ∈ N0 × N × I : m < n}. Then L is a recursively
enumerable set and {X ∖ T−m(Ui)}(m,n,i)∈L is uniformly recursively compact. Note that card{m ∈
N0 : (m,n, i) ∈ L} = n for all n ∈ N and i ∈ I. Then the function F : N × I → N0 given by
F (n, i) := card{m ∈ N0 : (m,n, i) ∈ L} is a recursive function. Thus, by Proposition 3.21 (ii), we
obtain that {

⋃
{X ∖ T−m(Ui) : m ∈ N0, (m,n, i) ∈ L}}(n,i)∈N×I is a sequence of uniformly recursively

compact sets. Hence, since X is a recursively compact set, by Proposition 3.20 (ii), {X ∖
⋃
{X ∖

T−m(Ui) : m ∈ N0, (m,n, i) ∈ L}}(n,i)∈N×I = {
⋂
{T−m(Ui) : m ∈ N0, (m,n, i) ∈ L}}(n,i)∈N×I is

uniformly lower semi-computable open. Since V1,i = Ui and Vn+1,i = T−1(Vn,i) ∩ Ui for all n ∈ N and

i ∈ I, it follows by induction that Vn+1,i =
⋂n

k=0 T
−k(Ui) for each n ∈ N0. Therefore, {Vn,i}(n,i)∈N×I

is uniformly lower semi-computable open. □

Moreover, given the recursive compactness of X, the computability of functions is preserved under
a finite number of operations among additions and multiplications. We summarize this property in
the following result (cf. [We00, Corollary 4.3.4]; see also [He25, Proposition 3.26]).

Proposition 3.23. Let (X, ρ, S) be a computable metric space in which X is recursively compact,
and H be a nonempty recursively enumerable set. Assume that {fi}i∈I (resp. {gh}h∈H) is a sequence
of uniformly computable functions fi : X → R (resp. gh : X → R). Then {fi + gh}(i,h)∈I×H , {fi ·
gh}(i,h)∈I×H are two sequences of uniformly computable functions.

Next, we recall the definition of recursively precompact metric space.

Definition 3.24 (Recursively precompact metric space). Let (X, ρ, S) be a computable metric
space with S = {si}i∈N. Then (X, ρ, S) is called recursively precompact if there exists an algorithm
that, for each n ∈ N, on input n, outputs a finite subset {ri : 1 ⩽ i ⩽ m} of N such that X =⋃m

i=1B(sri , 2
−n).

Finally, we record the following useful characterization of complete recursively precompact metric
spaces (see e.g. [GHR11, Proposition 4]).

Proposition 3.25. Let (X, ρ, S) be a computable metric space. Then X is recursively compact if and
only if (X, ρ) is complete and (X, ρ, S) is recursively precompact.

Computability of probability measures. Building upon the theory of computable functions and
recursively compact sets, we now discuss the computability of probability measures. We begin by
reviewing the computable structure on the measure space P(X) introduced in [HR09, Section 4]
(cf. [HR09, Proposition 4.1.3]; see also [He25, Proposition 3.29]).

Proposition 3.26. Let (X, ρ, S) be a computable metric space with S = {sn}n∈N. Assume that X is
recursively compact in (X, ρ, S). Then the following statements are true:
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(i) There exists an enumeration QS = {νk}k∈N of the set of Borel probability measures that are
supported on finitely many points in {sn : n ∈ N} and assign rational values to them such that
there exists an algorithm that, for each k ∈ N, upon input k, outputs a sequence {nl}pl=1 of
integers and a sequence {ql}pl=1 of positive rational numbers satisfying that

∑p
l=1 ql = 1 and

νk =
∑p

l=1 qlδsnl
.

(ii) (P(X), Wρ, QS) is also a computable metric space in which P(X) is recursively compact, where
Wρ is the Wasserstein–Kantorovich metric on P(X) (see (2.2)).

Let (X, ρ, S) be a computable metric space and assume that X is recursively compact. We endow
the measure space P(X) with the computable structure (P(X), Wρ, QS) given by Proposition 3.26.

The computability of measures is then defined via Definition 3.5. Specifically, a sequence {µi}i∈I
of measures in P(X) is a sequence of uniformly computable measures if it is uniformly computable
in (P(X), Wρ, QS), and a single measure µ ∈ P(X) is a computable measure if the corresponding
constant sequence consisting of µ is uniformly computable.

We now recall a key result on the computability of the integration function (cf. [HR09, Corol-
lary 4.3.2]; see also [He25, Proposition 3.30]).

Proposition 3.27. Let (X, ρ, S) be a computable metric space. Assume that X is recursively compact
in (X, ρ, S), and that {fi}i∈I is a sequence of uniformly computable functions fi : X → R. Then the
sequence {Ii}i∈I of functions Ii : P(X) → R defined by Ii(µ) := ⟨µ, fi⟩ for µ ∈ P(X) is a sequence of
uniformly computable functions.

As immediate corollaries of Proposition 3.27, we have the following results.

Corollary 3.28. Let (X, ρ, S) be a computable metric space. Assume that X is recursively compact in
(X, ρ, S), and that {fi}i∈I is a sequence of uniformly upper (resp. lower) semi-computable functions
fi : X → R. Then the sequence {Ii}i∈I of functions Ii : P(X) → R given by Ii(µ) := ⟨µ, fi⟩ is a
sequence of uniformly upper (resp. lower) semi-computable functions.

Corollary 3.29. Let (X, ρ, S) be a computable metric space in which X is recursively compact. As-
sume that H and L are two nonempty recursively enumerable sets with L ⊆ I×H, {Ui,h}(i,h)∈L is uni-
formly lower semi-computable open in (X, ρ, S), and {ri,h}(i,h)∈L is a sequence of uniformly computable
real numbers. Define, for each i ∈ I, Li := {(i, h) ∈ L : h ∈ H} and Ki := {µ ∈ P(X) : µ(Ui,h) ⩽
ri,h for each (i, h) ∈ Li}. Then {Ki}i∈I is uniformly recursively compact in (P(X), Wρ, QS).

Recall the definition of M(X,T ;Y ) from (1.1). The following result indicates the recursive com-
pactness of the set M(X,T ;Y ) (cf. [BHLZ25, Lemma 4.12]; see also [He25, Theorem 3.36]).

Proposition 3.30. Let (X, ρ, S) be a computable metric space in which X is recursively compact, and
{Ui}i∈I is a sequence of uniformly lower semi-computable open sets. Assume that {Ti}i∈I is a sequence
of uniformly computable functions Ti : X → X with respect to {Ui}i∈I . Then {M(X,Ti;Ui)}i∈I is
uniformly recursively compact in (P(X), Wρ, QS). In particular, if {Ti}i∈I is a sequence of uniformly
computable functions, then {M(X,Ti)}i∈I is uniformly recursively compact.

The following result is useful in the proof of the main result of this article (see e.g. [He25, Proposi-
tion 3.35]).

Proposition 3.31. Let (X, ρ, S) be a computable metric space, and X be a recursively compact set in
(X, ρ, S). Then there exists a sequence {τn}n∈N of uniformly computable functions τn : X → R such
that {τn : n ∈ N} is dense in C(X). Moreover, for all µ, ν ∈ M(X), µ(A) ⩾ ν(A) for each A ∈ B(X)
if and only if

〈
µ, τ+n

〉
⩾
〈
ν, τ+n

〉
for each n ∈ N.

3.2. Thermodynamic formalism. We review basic concepts from ergodic theory. For more detailed
discussions, we refer the reader to [Wa82, Section 4].
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Let (X,B, µ) be a probability space. A partition ξ = {Ah : h ∈ H} of (X,B, µ) is a disjoint collection
of elements of B whose union is X, where H is a countable index set. For each pair of partitions
ξ = {Ah : h ∈ H} and η = {Bl : l ∈ L} ofX, their join is the partition ξ∨η := {Ah∩Bl : h ∈ H, l ∈ L}.

Assume that T : X → X is a measure-preserving transformation of (X,B, µ). Consider a partition
ξ = {Ah : h ∈ H} of X. For each n ∈ N, T−n(ξ) denotes the partition

{
T−1(Ah) : h ∈ H

}
, and ξnT

denotes the join ξ∨T−1(ξ)∨· · ·∨T−(n−1)(ξ). The entropy of ξ is Hµ(ξ) := −
∑

h∈H µ(Ah) log(µ(Ah)) ∈
[0,+∞], where 0 log 0 is defined to be zero. One can show that if Hµ(ξ) < +∞, then lim

n→+∞
Hµ(ξ

n
T )/n

exists (see e.g. [Wa82, Chapter 4]). We denote this limit by hµ(T, ξ) and call it the measure-theoretic
entropy of T relative to ξ. The measure-theoretic entropy of T for µ is defined as

hµ(T ) := sup{hµ(T, ξ) : ξ is a partition of X with Hµ(ξ) < +∞}. (3.1)

We now introduce thermodynamic formalism, a particular branch of ergodic theory. The main ob-
jects of study are the topological pressure and equilibrium states (see e.g. [PU10, Wa82]; for the general
Borel-measurable setting used in Approach II, see e.g. [IT10, Definition 1.1], [DeT17, Section 2.3], and
[DoT23, Chapter 1.4]).

Let (X, ρ) be a compact metric space, T : X → X be a Borel-measurable transformation such that
M(X,T ) ̸= ∅, and ϕ : X → [−∞,+∞] be a Borel function. Then the topological pressure of the
potential ϕ with respect to the transformation T is given by

P (T, ϕ) := sup
{
hµ(T ) + ⟨µ, ϕ⟩ : µ ∈ M(X,T ) and ⟨µ, ϕ⟩ > −∞

}
. (3.2)

A measure µ ∈ M(X,T ) that attains the supremum in (3.2) is called an equilibrium state for the
transformation T and the potential ϕ. Denote the set of all such measures by E(T, ϕ). In particular,
when the potential ϕ is the constant function 0, we denote htop(T ) := P (T, 0) and say that a measure
µ ∈ M(X,T ) is a measure of maximal entropy of T if µ ∈ E(T, 0).

4. Approach I: Global approach via convex analysis

In this section, we establish the computability of equilibrium states for certain dynamical systems
with upper semicontinuous measure-theoretic entropy functions. We begin by recalling several defi-
nitions and results from functional analysis: a characterization of the set C(X)∗ϕ,PT

in (4.1) and its

relation to the set E(T, ϕ) of equilibrium states in (4.2). We then apply these results to verify the
recursive compactness of C(X)∗ϕ,PT

, thereby completing the proof of Theorem 1.1.

Let (X, ρ) be a compact metric space, and T : X → X a continuous map with finite topological
entropy. The measure-theoretic entropy function of T is the function µ 7→ hµ(T ) (defined in (3.1)) on
the space M(X,T ) of T -invariant Borel probability measures, where M(X,T ) is equipped with the
weak∗ topology. The topological pressure function of T , denoted by PT , is the function ϕ 7→ P (T, ϕ)
(defined in (3.2)) on C(X). For each µ ∈ M(X,T ), we denote by hµ(T ) the upper semicontinuous

regularization of the measure-theoretic entropy function. More precisely, hµ(T ) is the supremum of all
limit suprema lim supn→∞ hµn(T ), where {µn}n∈N ranges over all sequences in M(X,T ) that converge
to µ in the weak∗ topology.

Definition 4.1. Let V be a real topological vector space, and G : V → R be a convex continuous
function. A continuous linear functional F : V → R is tangent to G at x ∈ V if

F (y) ⩽ G(x+ y)−G(x)

for each y ∈ V . We denote the set of all such functionals by V ∗
x,G.

The following lemma is well-known (see e.g. [Wa82, Theorem 9.7 (iv) and (v)]).

Lemma 4.2. Let (X, ρ) be a compact metric space and T : X → X be a continuous map with finite
topological entropy. Then the topological pressure function PT : C(X) → R is convex and continuous.
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Lemma 4.2 ensures that the set C(X)∗ϕ,PT
is well defined for any continuous map T on a compact

metric space X and any continuous function ϕ. We now record a characterization of this space from
[Wa92, Theorem 3 (i)].

Lemma 4.3. Let (X, ρ) be a compact metric space, T : X → X be a continuous map with finite
topological entropy, and ϕ : X → R be a continuous function. A functional F ∈ C(X)∗ belongs to
C(X)∗ϕ,PT

if and only if there exists a measure µF ∈ M(X,T ) such that F (f) = ⟨µF , f⟩ for each

f ∈ C(X), and µF is the weak∗ limit of a sequence of measures {µn}n∈N in M(X,T ) satisfying
hµn(T ) + ⟨µn, ϕ⟩ → P (T, ϕ) as n→ +∞.

Remark 4.4. Recall that C(X)∗ can be naturally identified with the space M(X) of finite signed
Borel measures on X. Then Lemma 4.3 allows us to identify C(X)∗ϕ,PT

as a subset of M(X,T ). We
will adopt this identification in the remaining part of this article.

The following proposition characterizes C(X)∗ϕ,PT
and its relation to the set of equilibrium states

E(T, ϕ).

Proposition 4.5. Let (X, ρ) be a compact metric space, T : X → X be a continuous map with finite
topological entropy, and ϕ : X → R be a continuous function. Then

C(X)∗ϕ,PT
=
{
µ ∈ M(X,T ) : hµ(T ) + ⟨µ, ϕ⟩ = P (T, ϕ)

}
and (4.1)

E(T, ϕ) = C(X)∗ϕ,PT
∩
{
µ ∈ M(X,T ) : hµ(T ) ⩽ hµ(T )

}
. (4.2)

The characterization (4.1) follows from Lemma 4.3, and (4.2) is a consequence of [Wa92, Theorem 5].
The final ingredient of our argument is the following variational characterization of the regularized

entropy, which can be proved by the same method as [Wa82, Theorem 9.12].

Lemma 4.6. Let (X, ρ) be a compact metric space and T : X → X be a continuous map with finite
topological entropy. Then hµ(T ) = inf{P (T, θ)− ⟨µ, θ⟩ : θ ∈ C(X)} for each µ ∈ M(X,T ).

We now apply these results to establish the computability of C(X)∗ϕ,PT
.

Theorem 4.7. Let (X, ρ, S, {Xn}n∈N, {Tn}n∈N, {ϕn}n∈N) be a uniformly computable system with
Xn = X for all n ∈ N. Suppose Tn has finite topological pressure for each n ∈ N. Assume that the se-
quence {Tn}n∈N of transformations and the sequence {ϕn}n∈N of functions satisfy properties (i) and (ii)
in Theorem 1.1. For each n ∈ N, define

Γn :=
{
µ ∈ M(X,Tn) : hµ(Tn) + ⟨µ, ϕn⟩ = P (Tn, ϕn)

}
. (4.3)

Then {Γn}n∈N is uniformly recursively compact in (P(X), Wρ, QS).

Proof. For each n ∈ N, by (4.1) in Proposition 4.5, Γn is indeed the space of functionals which are
tangent to PTn at ϕn. Recall that the sequence {ψn,i}(n,i)∈N2 of functions and the sequence {Dn}n∈N
defined by Dn := {ψn,i : i ∈ N} are given in Theorem 1.1 property (i). In what follows, we establish
the following characterization of the spaces Γn.

Claim 1. For each n ∈ N, we have Γn = {µ ∈ M(X,Tn) : inf{P (Tn, ψ) − ⟨µ, ψ⟩ : ψ ∈ Dn} ⩾
P (Tn, ϕn)− ⟨µ, ϕn⟩}.

Proof of Claim 1. Fix an arbitrary n ∈ N. By (4.3) and Lemma 4.6, we have that

Γn = {µ ∈ M(X,Tn) : inf{P (Tn, θ)− ⟨µ, θ⟩ : θ ∈ C(X)} = P (Tn, ϕn)− ⟨µ, ϕn⟩}.

Hence, to show Claim 1, it suffices to show that for each µ ∈ M(X,Tn), the following two relations
are equivalent:

inf{P (Tn, θ)− ⟨µ, θ⟩ : θ ∈ C(X)} = P (Tn, ϕn)− ⟨µ, ϕn⟩, (4.4)

inf{P (Tn, ψ)− ⟨µ, ψ⟩ : ψ ∈ Dn} ⩾ P (Tn, ϕn)− ⟨µ, ϕn⟩. (4.5)
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First, assume µ ∈ M(X,Tn) satisfies (4.4). It follows from Dn ⊆ C(X) that (4.4) implies (4.5).
Conversely, assume µ ∈ M(X,Tn) satisfies (4.5). We proceed by contradiction. Suppose µ does not
satisfy (4.4). Then there exists ϕ ∈ C(X) such that P (Tn, ϕ)−⟨µ, ϕ⟩ < P (Tn, ϕn)−⟨µ, ϕn⟩. Since Dn

(the closure of Dn := {ψn,i : i ∈ N}) contains a neighborhood of ϕn by property (i) in Theorem 1.1,

there exists c ∈ (0, 1] such that cϕ + (1 − c)ϕn ∈ Dn. Thus, by the convexity and continuity of the
pressure function ϕ 7→ P (Tn, ϕ), we obtain that

P (Tn, ϕn)− ⟨µ, ϕn⟩ > P (Tn, cϕ+ (1− c)ϕn)− ⟨µ, cϕ+ (1− c)ϕn⟩
⩾ inf{P (Tn, ψ)− ⟨µ, ψ⟩ : ψ ∈ Dn} = inf{P (Tn, ψ)− ⟨µ, ψ⟩ : ψ ∈ Dn},

which contradicts the assumption that µ satisfies (4.5). Hence, µ must satisfy (4.4), completing the
proof of Claim 1.

For each n ∈ N, define a function fn : P(X) → R by

fn(ν) := inf{P (Tn, ψn,i)− ⟨ν, ψn,i⟩ : i ∈ N}+ ⟨ν, ϕn⟩ for ν ∈ P(X) and n ∈ N. (4.6)

Claim 2. {fn}n∈N is a sequence of uniformly upper semi-computable functions.

Proof of Claim 2. We construct a sequence {Fm,n}(m,n)∈N2 of uniformly computable functions
such that for each n ∈ N, the sequence {Fm,n}m∈N is nonincreasing and converges pointwise to fn
as m → ∞. By property (i) of Theorem 1.1, {P (Tn, ψn,i)}(n,i)∈N2 is a sequence of uniformly upper
semi-computable real numbers. Hence, by Definition 3.6, there exists an algorithm Ap such that for
all m, n, i ∈ N, on input m, n, i, the algorithm Ap outputs pm,n,i ∈ Q such that {pm,n,i}(m,n,i)∈N3

is nonincreasing in m and converges to P (Tn, ψn,i) as m → +∞ for all n, i ∈ N. Define integral
functionals In,i(ν) := ⟨ν, ϕn − ψn,i⟩ for all n, i ∈ N and ν ∈ P(X). Then by Proposition 3.27, it
follows from the uniform computability of {ψn,i}(n,i)∈N2 and {ϕn}n∈N that {In,i}(n,i)∈N2 is a sequence
of uniformly computable functions. Define Fm,n(ν) := min{pm,n,i + In,i(ν) : i ∈ N ∩ [1,m]} for all
n,m ∈ N and ν ∈ P(X). By the uniform computability of {In,i}(n,i)∈N2 , there exists an algorithm
AI such that for all n, i, k ∈ N and ν ∈ P(X), on input n, i, k and an oracle for ν, AI outputs qi,k
with |qi,k −In,i(ν)| ⩽ 2−k. We can now design an algorithm AF to compute {Fm,n}(m,n)∈N2 . For each
m, n, k ∈ N and each ν ∈ P(X), we apply Ap and AI to compute {pm,n,i}mi=1 and {qi,k}mi=1 such that

|qi,k − In,i(ν)| ⩽ 2−k for each integer 1 ⩽ i ⩽ m. Then we compute min{pm,n,i + qi,k : i ∈ N ∩ [1,m]}
as the output of AF . Note that min{pm,n,i+ qi,k : i ∈ N∩ [1,m]}+2−k ⩾ Fm,n(ν) ⩾ min{pm,n,i+ qi,k :

i ∈ N ∩ [1,m]} − 2−k. It follows that AF demonstrates the uniform computability of the sequence
{Fm,n}(m,n)∈N2 of functions.

Now fix an integer n ∈ N and a measure ν ∈ P(X). Since {pm,n,i}(m,i)∈N2 is nonincreasing in m
for each i ∈ N, the sequence {Fm,n(ν)}m∈N is nonincreasing; so its limit exists. Note that pm,n,i ⩾
P (Tn, ψn,i) for all m, i ∈ N. Then by construction, we have Fm,n(ν) ⩾ fn(ν) for each m ∈ N.
Hence, limm→+∞ Fm,n(ν) ⩾ fn(ν). On the other hand, since limm→+∞ pm,n,i = P (Tn, ψn,i) for each
i ∈ N, it follows from (4.6) that for each ϵ > 0, there exist integers i, j with 1 ⩽ i ⩽ j such that
fn(ν) + ϵ > P (Tn, ψn,i) + In,i(ν) + ϵ/2 > pj,n,i + In,i(ν) ⩾ Fj,n(ν) ⩾ limm→+∞ Fm,n(ν). Consequently,
fn(ν) ⩾ limm→+∞ Fm,n(ν). This shows that limm→+∞ Fm,n(ν) = fn(ν).

Since {Fm,n}(m,n)∈N2 is a sequence of uniformly computable functions and {Fm,n(ν)}m∈N is non-
increasing for all ν, by Definition 3.15, {fn}n∈N is a sequence of uniformly upper semi-computable
functions. This establishes Claim 2.

We now complete the proof by expressing Γn as the complement of a uniformly lower semi-
computable open set within the uniformly recursively compact set M(X,Tn). By property (ii) of
Theorem 1.1, {P (Tn, ϕn)}n∈N is a sequence of uniformly lower semi-computable real numbers. By
Definition 3.6, there exists a sequence {qm,n}(m,n)∈N2 of uniformly computable real numbers such that,
for each n ∈ N, the sequence {qm,n}m∈N is nondecreasing inm and converges to P (Tn, ϕn) asm→ +∞.
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Hence, it follows from the definition of {Dn}n∈N, Claim 1, and (4.6) that

Γn = M(X,Tn) ∩ f−1
n ([P (Tn, ϕn),+∞)) = M(X,Tn)∖

⋃
m∈N

f−1
n ((−∞, qm,n)). (4.7)

Since {qm,n}(m,n)∈N2 is a sequence of uniformly computable real numbers, by Claim 2 and the im-

plication from (i) to (iii) in Proposition 3.16,
{
f−1
n ((−∞, qm,n))

}
(m,n)∈N2 is uniformly lower semi-

computable open in (P(X), Wρ, QS). Hence, by Proposition 3.9,
{⋃

m∈N f
−1
n ((−∞, qm,n))

}
n∈N is

uniformly lower semi-computable open. Moreover, since {Tn}n∈N is a sequence of uniformly com-
putable functions, by Proposition 3.30, {M(X,Tn)}n∈N is uniformly recursively compact. Therefore,
by Proposition 3.20 (iii) and (4.7), {Γn}n∈N is uniformly recursively compact. □

Now we turn to prove Theorem 1.1.

Proof of Theorem 1.1. Let Γn be as defined in (4.3). Consider an arbitrary n ∈ N. Then the
measure-theoretic entropy map ν 7→ hν(Tn) is upper semicontinuous by hypothesis. This implies that
hν(Tn) = hν(Tn) for all ν ∈ M(X,Tn). It follows from (4.3) that the set Γn coincides with the set of
equilibrium states E(Tn, ϕn). Hence, by property (iii), we have Γn = E(Tn, ϕn) = {µn}.

By Theorem 4.7, the sequence {{µn}}n∈N of singletons is uniformly recursively compact in (P(X), Wρ, QS).
Therefore, by Proposition 3.20 (i), {µn}n∈N is uniformly computable. □

5. Approach II: Local approach via transfer operator and Jacobian

This section is dedicated to the proof of Theorem 1.3 and its applications. Subsection 5.1 re-
calls essential notions and establishes Theorem 5.6, which states the relationship between the set
M(X,T ;Y, J) and E(T, ϕ) under additional conditions. The proof of Theorem 1.3 follows in Sub-
section 5.2. Finally, in Subsection 5.3, we apply these results to demonstrate the computability of
equilibrium states.

5.1. Jacobian and the transfer operator. We begin by recalling the definition of Jacobians and
establishing their existence, uniqueness, and Rokhlin’s formula. We then define transfer operators and
establish their key properties in our setting. Using these tools, we provide an equivalent characteriza-
tion of Jacobians with respect to invariant measures in Theorem 5.5. Building on this, the subsection
concludes with Theorem 5.6.

Definition 5.1 (Jacobian). Let (X, ρ) be a compact metric space, and T : X → X be a Borel-
measurable transformation. We say that A ⊆ X is admissible (for T ) if A, T (A) ∈ B(X), and T |A is
injective. Suppose J : X → [0,+∞) is a Borel function, µ ∈ P(X), and E ∈ B(X) with µ(E) = 1.
Then J is said to be a Jacobian on E for T with respect to µ if for all admissible sets A ⊆ E,

µ(T (A)) =

∫
A
J dµ.

Moreover, we say that J is a Jacobian for T with respect to µ if there exists Ẽ ∈ B(X) with µ
(
Ẽ
)
= 1

such that J is a Jacobian on Ẽ for T with respect to µ.

Recall that P(X;Y ) = {µ ∈ P(X) : µ(Y ) = 1} for Y ∈ B(X). We state below the hypotheses
under which we will develop our theory in this section.

Definition 5.2. We say that the sextuple (X, ρ, T, Y, {Yk}k∈N, µ) is admissible if it has the following
properties:

(i) (X, ρ) is a compact metric space.

(ii) T : X → X is a Borel-measurable transformation.

(iii) {Yk}k∈N is a sequence of pairwise disjoint admissible sets for T .

(iv) Y =
⋃

k∈N Yk.
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(v) µ ∈ M(X,T ) ∩ P(X;Y ).

The following proposition states the uniqueness of the Jacobian and provides a lower bound for the
measure-theoretic entropy in terms of the Jacobian.

Proposition 5.3. Let (X, ρ, T, Y, {Yk}k∈N, µ) be admissible. Assume that J : X → [0,+∞) is a
Jacobian for T with respect to µ. Then J(x) ⩾ 1 for µ-a.e. x ∈ X, and hµ(T ) ⩾ ⟨µ, log(J)⟩.
Moreover, for each Borel function J̃ : X → [0,+∞), J̃ is a Jacobian for T with respect to µ if and

only if J(x) = J̃(x) for µ-a.e. x ∈ X.

The lower bound given above is a classical result in ergodic theory known as the Rokhlin entropy
formula. We refer the reader to [Sa99, Theorem 4.2] for a version for topological Markov shifts and to
[Co12, Corollary 12.1] for a version for finite admissible partitions; see [He25, Proposition 4.3] for the
proof in our context. The uniqueness of the Jacobian immediately follows from [Ro49, Theorem 2.7],
[PU10, Definition 2.9.2 & Proposition 2.9.5].

Next, we construct a specific Jacobian, define a useful operator, and establish its key properties in
the following proposition. With these properties, this operator can be seen as a normalized transfer
operator, which is essential for the proof of Theorem 5.5.

Proposition 5.4. Let (X, ρ, T, Y, {Yk}k∈N, µ) be admissible. Then the following statements are true:

(i) For each k ∈ N, there exists a nonnegative µ-integrable Borel function Φk on X such that

Φk(x) = 0 for each x /∈ T (Yk) and µ
(
T−1(B) ∩ Yk

)
=

∫
B
Φk dµ for each B ∈ B(X). (5.1)

(ii) Define a function Ψ: X → R by

Ψ(x) := 0 for each x ∈ Y c and Ψ(x) := Φk(T (x)) for each k ∈ N and each x ∈ Yk. (5.2)

Write Ỹ := Y ∖Ψ−1(0). Then there exists a Borel function Jµ : X → [0,+∞) that is a Jacobian

on Ỹ for T with respect to µ and satisfies Jµ(x) ·Ψ(x) = 1 for µ-a.e. x ∈ X.

(iii) Denote by L+(X) the space of all Borel functions from X to [0,+∞]. Then Lµ : L
+(X) →

L+(X) given by

Lµ(u)(x) :=
∑

y∈T−1(x)∩Y

u(y)Ψ(y), for u ∈ L+(X) and x ∈ X, (5.3)

satisfies the following: for all u, v ∈ L+(X), c ⩾ 0, and µ-a.e. x ∈ X,

Lµ(1)(x) = 1, (5.4)

Lµ(u+ v)(x) = Lµ(u)(x) + Lµ(v)(x), Lµ(cu)(x) = cLµ(u)(x), and (5.5)

⟨µ,Lµ(u)⟩ = ⟨µ, u⟩. (5.6)

We prove (i) and (ii) by using the Radon–Nikodym theorem to construct Φk and Jµ, then showing
their reciprocal relationship with Ψ via change of variables. To establish (iii), we shall apply the
monotone convergence theorem repeatedly. We prove (5.4) by testing

∫
ALµ(1) dµ = µ(A) for all

Borel A. Finally, (5.5) follows directly from (5.3), and the integration formula (5.6) is checked on
characteristic functions.

Proof. (i) Fix an arbitrary k ∈ N. Since (X, ρ, T, Y, {Yk}k∈N, µ) is admissible, by Definition 5.2 (ii),
(iii), and (v), T is Borel measurable, Yk, T (Yk) ∈ B(X), and µ ∈ M(X,T ) ∩ P(X;Y ). Define
µk(B) := µ(B) and µ̃k(B) := µ

(
(T |Yk

)−1(B)
)
= µ

(
T−1(B) ∩ Yk

)
for each Borel subset B ⊆ T (Yk).

Then µk and µ̃k are both σ-finite positive Borel measures on T (Yk). Since µ ∈ M(X,T )∩P(X;Y ), we
obtain that µ̃k(B) = µ

(
T−1(B)∩Yk

)
⩽ µ

(
T−1(B)

)
= µ(B) = µk(B) for each Borel subset B ⊆ T (Yk).
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This implies that µ̃k is absolutely continuous with respect to µk. By the Radon–Nikodym theorem,

there exists a nonnegative µk-integrable derivative dµ̃k
dµk

. Define Φk : X → R by

Φk(x) :=

{
dµ̃k
dµk

(x) if x ∈ T (Yk);

0 if x /∈ T (Yk).

By construction, Φk is a nonnegative µ-integrable Borel function. Moreover, by the definition of the
Radon–Nikodym derivative,

µ
(
T−1(B) ∩ Yk

)
= µ

(
T−1(B ∩ T (Yk)) ∩ Yk

)
=

∫
B∩T (Yk)

Φk dµ =

∫
B
Φk dµ for each B ∈ B(X).

Hence, Φk satisfies (5.1), establishing Proposition 5.4 (i).

(ii) By (5.2), Ψ is a Borel function on X, and thus Ỹ ∈ B(X). We first prove that µ
(
Ỹ
)
= 1. By

Proposition 5.4 (i) and (5.2), we have µ
(
Ψ−1(0)∩ Yk

)
= µ

(
T−1

(
Φ−1
k (0)

)
∩ Yk

)
=
∫
Φ−1

k (0)Φk dµ = 0 for

each k ∈ N. Since {Yk}k∈N is a sequence of pairwise disjoint Borel subsets with µ(Y ) = µ
(⋃

k∈N Yk
)
= 1

by Definition 5.2 (iv) and (v), we obtain µ
(
Ỹ
)
= µ(Y )−µ

(
Ψ−1(0)∩Y

)
= 1−

∑
k∈N µ

(
Ψ−1(0)∩Yk

)
= 1.

Now fix an arbitrary k ∈ N and write Ỹk := Yk ∖ Ψ−1(0). Since Ψ is a Borel function, we have

Ỹk ∈ B(X). Define νk(B) := µ(B) and ν̃k(B) := µ(T (B)) for each Borel subset B ⊆ Ỹk. By [Ke95,
Corollary 15.2], it follows from Definition 5.2 (iii) that T is a Borel isomorphism of Yk with T (Yk).

Hence, by Definition 5.2 (iii) and (v), νk and ν̃k are both σ-finite positive Borel measures on Ỹk. We
next prove that ν̃k is absolutely continuous with respect to νk. To this end, consider an arbitrary

Borel set A ⊆ Ỹk with µ(A) = 0; we show that µ(T (A)) = 0. Indeed, since T is injective on Yk, we
have T−1(T (A)) ∩ Yk = A. Thus, by Proposition 5.4 (i),

0 = µ(A) = µ
(
T−1(T (A)) ∩ Yk

)
=

∫
T (A)

Φk dµ. (5.7)

Since A ⊆ Ỹk = Yk∖Ψ−1(0) and Ψ(x) = Φk(T (x)) for each x ∈ Yk by (5.2), we have Φk(x) > 0 for each
x ∈ T (A). Combined with (5.7), this implies that µ(T (A)) = 0. Thus, ν̃k is absolutely continuous with

respect to νk. By the Radon–Nikodym theorem, there exists a nonnegative µ-integrable derivative dν̃k
dνk

.

We define Jµ by

Jµ(x) := 0 for each x ∈ Ψ−1(0) and Jµ(x) :=
dν̃k
dνk

(x) for all k ∈ N and x ∈ Ỹk. (5.8)

We now verify that Jµ is a Jacobian on Ỹ for T with respect to µ. Since Ỹ =
⋃

k∈N Ỹk, by the
definitions of {νk}k∈N and {ν̃k}k∈N, it follows from (5.8) that

µ(T (A)) =
∑
k∈N

µ
(
T
(
A ∩ Ỹk

))
=
∑
k∈N

ν̃k
(
A ∩ Ỹk

)
=
∑
k∈N

∫
A∩Ỹk

dν̃k
dνk

dνk

=
∑
k∈N

∫
A∩Ỹk

dν̃k
dνk

dµ =
∑
k∈N

∫
A∩Ỹk

Jµ dµ =

∫
A∩Ỹ

Jµ dµ =

∫
A
Jµ dµ,

for each admissible set A ⊆ Ỹ for T . Since µ
(
Ỹ
)
= 1, we conclude that Jµ is a Jacobian on Ỹ .

Finally, we verify that Jµ(x) ·Ψ(x) = 1 for µ-a.e. x ∈ X. By [Ke95, Corollary 15.2], it follows from
Definition 5.2 (iii) that T is a Borel isomorphism of Yk with T (Yk) for each k ∈ N. Since Jµ is a

Jacobian on Ỹ for T with respect to µ, by the definition of {ν̃k}k∈N, we have

ν̃k(A) = µ(T (A)) =

∫
A
Jµ dµ for each k ∈ N and each Borel A ⊆ Ỹk. (5.9)
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Moreover, by Proposition 5.4 (i), we obtain that

µ(A) = µ
(
T−1(T (A)) ∩ Yk

)
=

∫
T (A)

Φk dµ =

∫
A
Φk ◦ T d(µ ◦ T ) =

∫
A
Ψdν̃k

for each k ∈ N and each Borel A ⊆ Ỹk. Thus, by (5.9) and the change-of-variable formula, we

obtain Jµ(x) · Ψ(x) = 1 for µ-a.e. x ∈
⋃

k∈N Ỹk. Since µ
(⋃

k∈N Ỹk
)
= µ

(
Ỹ
)
= 1, we conclude that

Jµ(x) ·Ψ(x) = 1 for µ-a.e. x ∈ X.

(iii) By Definition 5.2 (iii) and (iv), we have that Y =
⋃

k∈N Yk and T is injective on Yk for each
k ∈ N. Since Ψ is nonnegative and Borel, the expression for Lµ(u)(x) given in (5.3) is the sum of
countably (possibly infinitely) many nonnegative terms for each u ∈ L+(X) and each x ∈ X. Hence,
Lµ(u) ∈ L+(X) for each u ∈ L+(X), and Lµ : L

+(X) → L+(X) is monotone.
We now establish (5.4). By (5.3), we have that

Lµ(1A)(x) =
∑

y∈T−1(x)∩Y

1A(y)Ψ(y) =
∑

y∈T−1(x)∩A∩Y

Ψ(y) for each A ∈ B(X). (5.10)

Then by (5.10), (5.2), Y =
⋃

k∈N Yk, (5.1), the monotone convergence theorem, and µ ∈ M(X,T ) ∩
P(X;Y ), we obtain that∫

A
Lµ(1) dµ =

∫
A

∑
y∈T−1(x)∩Y

Ψ(y) dµ(x) =

∫
A

∑
k∈N:T−1(x)∩Yk ̸=∅

Φk dµ =

∫
A

∑
k∈N

Φk dµ

=
∑
k∈N

∫
A
Φk dµ =

∑
k∈N

µ
(
T−1(A) ∩ Yk

)
= µ

(
T−1(A) ∩ Y

)
= µ

(
T−1(A)

)
= µ(A)

for each A ∈ B(X). This establishes (5.4).
To establish (5.5), consider arbitrary u, v ∈ L+(X) and c ⩾ 0. By (5.3), we have Lµ(u + v)(x) =

Lµ(u)(x) + Lµ(v)(x) for each x ∈ X. Moreover, Lµ(cu)(x) = cLµ(u)(x) for each x ∈ X and each
nonnegative c ∈ Q. By the monotonicity of Lµ, it follows from the monotone convergence theorem
that Lµ(cu)(x) = cLµ(u)(x) for each c ⩾ 0. This establishes (5.5).

Finally, we establish (5.6). Consider an arbitrary D ∈ B(X). Fix k ∈ N and write Dk := D ∩ Yk.
By (5.10), Lµ

(
1Dk

)
(x) = 0 for each x /∈ T (Dk). Now consider an arbitrary x ∈ T (Dk). Note that T is

injective on Yk by Definition 5.2 (iii). Then the set T−1(x)∩Dk contains a unique element, which we
denote by yk(x). Using (5.10) and (5.2), we deduce that Lµ

(
1Dk

)
(x) = Ψ(yk(x)) = Φk(x). Integrating

this and applying Proposition 5.4 (i) yields〈
µ,Lµ

(
1Dk

)〉
=

∫
T (Dk)

Φk dµ = µ
(
T−1(T (Dk)) ∩ Yk

)
= µ(Dk).

Thus it follows from (5.10) and Definition 5.2 (iv) that
〈
µ,Lµ(1D)

〉
=
∑

k∈N
〈
µ,Lµ

(
1Dk

)〉
=
∑

k∈N µ(Dk) =
µ(D ∩ Y ) = µ(D), where the last equality holds as µ ∈ P(X;Y ). This establishes the identity for
indicator functions. The general result (5.6) for all nonnegative measurable functions then follows
from a standard argument using the monotone convergence theorem. □

The following theorem characterizes Jacobians in terms of an eigenfunction equation for the transfer
operator. This characterization will be key in identifying equilibrium states.

Theorem 5.5. Let (X, ρ, T, Y, {Yk}k∈N, µ) be admissible. Assume that Jµ is given as in Proposi-
tion 5.4, and J is a positive Borel function on X. Then J is a Jacobian on Y for T with respect to µ
if and only if ∑

y∈T−1(x)∩Y

1

J(y)
= 1 for µ-a.e. x ∈ X, (5.11)

log(J) ∈ L1(µ), and ⟨µ, log(J)⟩ =
〈
µ, log

(
Jµ
)〉
. (5.12)
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Proof. Let {Φk}k∈N, Ψ, and Lµ be as in Proposition 5.4. Write Ỹ := Y ∖Ψ−1(0).
We first prove the forward implication. Assume that J is a Jacobian on Y . We show that J

satisfies (5.11) and (5.12). By Proposition 5.4 (ii), Jµ is a Jacobian on Ỹ . By Proposition 5.3,
J(x) = Jµ(x) ⩾ 1 for µ-a.e. x ∈ X. Thus, log(J), log

(
Jµ
)
∈ L1(µ) and ⟨µ, log(J)⟩ =

〈
µ, log

(
Jµ
)〉
.

This establishes (5.12).

We now establish (5.11). By Proposition 5.4 (ii), there exists a Borel setH1 ⊆ Ỹ such that µ(H1) = 1
and J(x) ·Ψ(x) = 1 for each x ∈ H1. For each x /∈ T (Y ∖H1), we have T−1(x) ∩ Y ⊆ H1, and hence
J(y) ·Ψ(y) = 1 for each y ∈ T−1(x) ∩ Y . Since J is a Jacobian on Y , it follows from µ(Y ∖H1) = 0
that µ(T (Y ∖ H1)) = 0. Thus, for µ-a.e. x ∈ X, we have J(y) · Ψ(y) = 1 for each y ∈ T−1(x) ∩ Y .
Combined with (5.4), this implies that

∑
y∈T−1(x)∩Y

1
J(y) =

∑
y∈T−1(x)∩Y Ψ(y) = Lµ(1X)(x) = 1 for

µ-a.e. x ∈ X.
We now establish the backward implication. Assume that J satisfies (5.11) and (5.12). We show

that J is a Jacobian on Y . By Proposition 5.4 (ii), there exists a Borel set H2 ⊆ Ỹ such that µ(H2) = 1

and Jµ(x) ·Ψ(x) = 1 for each x ∈ H2. For each x /∈ T
(
Ỹ ∖H2

)
, we have T−1(x)∩ Ỹ ⊆ H2, and hence

Jµ(y) ·Ψ(y) = 1 for each y ∈ T−1(x)∩ Ỹ . Since Jµ is a Jacobian on Ỹ , it follows from µ
(
Ỹ ∖H2

)
= 0

that µ
(
T
(
Ỹ ∖H2

))
= 0. Thus, we obtain that

for µ-a.e. x ∈ X, Jµ(y) ·Ψ(y) = 1 for each y ∈ T−1(x) ∩ Ỹ . (5.13)

Since J is a positive Borel function and Jµ is a nonnegative Borel function, we have Jµ
/
J ∈ L+(X).

By (5.3), Ỹ = Y ∖Ψ−1(0), (5.13), and (5.11), we obtain that for µ-a.e. x ∈ X,

Lµ

(
Jµ
/
J
)
(x) =

∑
y∈T−1(x)∩Y

Jµ(y)Ψ(y)

J(y)
=

∑
y∈T−1(x)∩Ỹ

Jµ(y)Ψ(y)

J(y)

=
∑

y∈T−1(x)∩Ỹ

1

J(y)
⩽

∑
y∈T−1(x)∩Y

1

J(y)
= 1.

(5.14)

By (5.6) and (5.12), we obtain that

1 = ⟨µ,1X⟩ ⩾
〈
µ,Lµ

(
Jµ
/
J
)〉

=
〈
µ, Jµ

/
J
〉
⩾ 1− ⟨µ, log(J)⟩+

〈
µ, log

(
Jµ
)〉

= 1. (5.15)

The last inequality holds since x ⩾ 1 + log(x) for each x > 0, with equality if and only if x = 1.
Thus, all inequalities in (5.15) are equalities. Hence, Jµ(x) = J(x) and Lµ

(
Jµ
/
J
)
(x) = 1 for µ-a.e.

x ∈ X. This implies that the inequality in (5.14) is an equality. Since J is a positive function, we have

T−1(x)∩ Ỹ = T−1(x)∩Y for µ-a.e. x ∈ X. For each x ∈ T
(
Y ∖ Ỹ

)
, we have T−1(x)∩ Ỹ ̸= T−1(x)∩Y .

This implies µ
(
T
(
Y ∖ Ỹ

))
= 0. Since Jµ is a Jacobian on Ỹ and J(x) = Jµ(x) for µ-a.e. x ∈ X, we

conclude that J is a Jacobian on Ỹ . By µ
(
Ỹ
)
= 1, we obtain µ(T (A)) = µ

(
T
(
A∩Ỹ

))
+µ
(
T
(
A∖Ỹ

))
=∫

A∩Ỹ J dµ+ 0 =
∫
AJ dµ for each admissible set A ⊆ Y . Therefore, J is a Jacobian on Y . □

Recall the definition of M(X,T ;Y, J) from (1.2). For each triple (X, ρ, T ) satisfying proper-
ties (i) and (ii) in Definition 5.2, each Borel Y ⊆ X such that there exists a unique Jacobian Jµ
(cf. Proposition 5.3) for T with respect to µ for each µ ∈ M(X,T )∩P(X,Y ), and each Borel function
ϕ : X → R, we define

E0(T, ϕ;Y ) :=
{
µ ∈ E(T, ϕ) ∩ P(X;Y ) : hµ(T ) =

〈
µ, log

(
Jµ
)〉}

, (5.16)

Indeed, for a Borel subset Y ⊆ X satisfying that there exists {Yk}k∈N such that properties (iii) and (iv)
in Definition 5.2 are satisfied, the existence and uniqueness of the Jacobians follow from Proposi-
tions 5.4 (ii) and 5.3. Moreover, for Y with a weaker assumption, the uniqueness and existence of
Jacobians still hold (cf. Lemma 5.7).

Combining Theorem 5.5 with the definition of equilibrium states yields the following result, which
provides a verifiable criterion for identifying equilibrium states.
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Theorem 5.6. Let (X, ρ, T, Y, {Yk}k∈N, µ) be admissible, and ϕ : X → R be a Borel function with
⟨µ, ϕ⟩ ∈ R. Suppose that J is a positive Borel function on X which satisfies the following properties:

(i) There exists a bounded Borel function h : X → R such that for each x ∈ Y ,

J(x) = exp(P (T, ϕ)− ϕ(x) + h(T (x))− h(x)).

(ii)
∑

y∈T−1(x)∩Y

1
J(y) = 1 for each x ∈

⋂
i∈N0

T i(Y ).

Then µ ∈ M(X,T ;Y, J) if and only if µ ∈ E0(T, ϕ;Y ).

Proof. Since h is a bounded Borel function and µ ∈ M(X,T ), we have ⟨µ, h⟩ = ⟨µ, h◦T ⟩ ∈ (−∞,+∞).
Since J satisfies property (i), µ ∈ P(X;Y ), and ⟨µ, ϕ⟩ < +∞, we obtain that

⟨µ, log(J)⟩ = P (T, ϕ)− ⟨µ, ϕ⟩+ ⟨µ, h ◦ T ⟩ − ⟨µ, h⟩ = P (T, ϕ)− ⟨µ, ϕ⟩. (5.17)

By Proposition 5.4 (ii), there exists a Borel function Jµ : X → R+ that is a Jacobian for T with respect
to µ.

We first establish the forward implication. Consider µ ∈ M(X,T ;Y, J). Since µ ∈ P(X;Y ), it
follows from (1.2) that Jµ(x) ⩾ J(x) for µ-a.e. x ∈ X. By (5.17), (3.2), and Proposition 5.3, we have

⟨µ, log(J)⟩ = P (T, ϕ)− ⟨µ, ϕ⟩ ⩾ hµ(T ) ⩾
〈
µ, log

(
Jµ
)〉
. (5.18)

Since Jµ(x) ⩾ J(x) for µ-a.e. x ∈ X, the inequalities in (5.18) must be equalities, which implies
µ ∈ E(T, ϕ) and hµ(T ) =

〈
µ, log

(
Jµ
)〉
. This implies µ ∈ E0(T, ϕ;Y ) (recall (5.16)).

We now establish the backward implication. Suppose µ ∈ E(T, ϕ) and hµ(T ) =
〈
µ, log

(
Jµ
)〉
.

By (3.2) and (5.17), we obtain
〈
µ, log

(
Jµ
)〉

= hµ(T ) = P (T, ϕ) − ⟨µ, ϕ⟩ = ⟨µ, log(J)⟩. Since µ ∈
M(X,T ) ∩ P(X;Y ), we have 1 ⩾ µ

(
T i(Y )

)
⩾ µ(Y ) = 1 for each i ∈ N0. Thus µ

(⋂
i∈N0

T i(Y )
)
= 1.

Since J satisfies property (ii), by Theorem 5.5, J is a Jacobian on Y for T with respect to µ. By (1.2),
we conclude that µ ∈ M(X,T ;Y, J). □

Finally, we state the following lemma to weaken property (iii) in Definition 5.2.

Lemma 5.7. Let (X, ρ, T, Y, {Yk}k∈N, µ) satisfy properties (i), (ii), (iv), and (v) of Definition 5.2.
Assume that Yk is admissible for T for each k ∈ N. Then there exists a sequence {Y ′

k}k∈N of Borel
subsets such that (X, ρ, T, Y, {Y ′

k}k∈N, µ) is an admissible sextuple.

Proof. Set Y ′
k := Yk ∖

⋃k−1
n=1 Yn for each k ∈ N. Then we have

⋃
k∈N Y

′
k =

⋃
k∈N Yk = Y . By Defini-

tion 5.1, it follows from Y ′
k ⊆ Yk that Y ′

k is admissible for T for each k ∈ N. Hence, by definition,
{Y ′

k}k∈N is a sequence of pairwise disjoint admissible sets for T , which implies that property (iii)
of Definition 5.2 is satisfied for the sextuple (X, ρ, T, Y, {Y ′

k}k∈N, µ). Therefore, by Definition 5.2,
(X, ρ, T, Y, {Y ′

k}k∈N, µ) is admissible. □

5.2. Proof of Theorem 1.3. Theorem 1.3 follows immediately from the following theorem.

Theorem 5.8. Let (X, ρ, S, {Xn}n∈N, {Tn}n∈N) be a uniformly computable system, and Yn be an open
subset of Xn for each n ∈ N. Assume that there exist two recursively enumerable sets K and L with
L ⊆ N ×K, and a sequence {Yn,k}(n,k)∈L of uniformly lower semi-computable open sets in (X, ρ, S)
such that Yn,k is admissible for Tn, and Yn =

⋃
(n,k)∈Ln

Yn,k, where Ln := {(n, k) ∈ L : k ∈ K} for

each n ∈ N.
Suppose {Jn}n∈N is a sequence of uniformly lower semi-computable functions Jn : X → [0,+∞) with

respect to {Yn}n∈N such that Jn is nonnegative on Yn and Borel for each n ∈ N. Then {M(X,Tn;Yn, Jn)}n∈N
is uniformly recursively compact in (P(X), Wρ, QS).

Proof of Theorem 1.3. By Theorem 5.8, {M(X,Tn;Yn, Jn)}n∈N is uniformly recursively compact
in (P(X), Wρ, QS). By Proposition 3.21 (i), since {Kn}n∈N is uniformly recursively compact, so is
{M(X,Tn;Yn, Jn) ∩ Kn}n∈N. Note that M(X,Tn;Yn, Jn) ∩ Kn = {µn} for each n ∈ N by (1.3).
Therefore, by Proposition 3.20 (i), {µn}n∈N is uniformly computable in (P(X), Wρ, QS). □
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We devote the rest of this subsection to a proof of Theorem 5.8. Our proof proceeds by constructing
a sequence of uniformly lower semi-computable open sets and expressing the set M(X,Tn;Yn, Jn) as
the complement of their union. The uniform recursive compactness then follows from established
properties of recursively compact spaces.

Proof of Theorem 5.8. By Proposition 3.31, there exists a sequence {τs}s∈N of uniformly com-
putable functions τs : X → R such that {τs : s ∈ N} is dense in C(X). By the computability of the
absolute value function, the sequence

{
τ+s
}
s∈N is a sequence of uniformly computable functions. Since

{Yn,k}(n,k)∈L is uniformly lower semi-computable open, by Proposition 3.17, there exists a sequence
{hm,n,k}(m,(n,k))∈N×L of uniformly computable functions hm,n,k : X → R such that for each (n, k) ∈ L,
the following properties are satisfied:

(i) For each x ∈ X, {hm,n,k(x)}m∈N is nondecreasing and hm,n,k(x) → 1Yn,k
(x) as m→ +∞.

(ii) For each m ∈ N, hm,n,k(x) ⩾ 0 for each x ∈ X and hm,n,k(x) = 0 for each x /∈ Yn,k.

We define for all m, s ∈ N, x ∈ X, and (n, k) ∈ L,

Wn,k
m,s(x) :=

{
sup
{
τ+s (y) · hm,n,k(y) : y ∈ T−1

n (x)
}

if x ∈ Tn(Yn,k);

0 otherwise,
(5.19)

V n,k
m,s (x) := Jn(x) · τ+s (x) · hm,n,k(x), and (5.20)

Ψn,k
m,s :=

{
µ ∈ P(X) :

〈
µ,Wn,k

m,s − V n,k
m,s

〉
< 0
}
. (5.21)

We first establish the following claim.

Claim 1.
{
Ψn,k

m,s

}
(m,s,(n,k))∈N2×L

is uniformly lower semi-computable open in (P(X), Wρ, QS).

Proof of Claim 1. Let SQ = {qv}v∈N (see Subsection 3.1). First, we show that
{
Wn,k

m,s

}
(m,s,(n,k))∈N2×L

is a sequence of uniformly upper semi-computable functions. Denote Qv := (−∞, qv) for each v ∈ N.
Indeed, it is not hard to derive from (5.19) and property (ii) of {hm,n,k}(m,(n,k))∈N×L that

(
Wn,k

m,s

)−1
(Qc

v) =

{
X if qv ⩽ 0;

Tn
((
τ+s · hm,n,k

)−1
(Qc

v)
)

otherwise
(5.22)

for all m, s, v ∈ N, and (n, k) ∈ L.
By the uniform computability of

{
τ+s
}
s∈N and {hm,n,k}(m,(n,k))∈N×L, Proposition 3.23 implies that{

τ+s · hm,n,k

}
(m,s,(n,k))∈N2×L

is a sequence of uniformly computable functions. Since {Qv}v∈N is

uniformly lower semi-computable open in
(
R, dR, SQ

)
, by Proposition 3.14, the sequence

{(
τ+s ·

hm,n,k

)−1
(Qv)

}
(m,s,v,(n,k))∈N3×L

is uniformly lower semi-computable open in (X, ρ, S). Note that(
τ+s · hm,n,k

)−1
(Qc

v) =
((
τ+s · hm,n,k

)−1
(Qv)

)c
for all m, s, v ∈ N, and (n, k) ∈ L. Then since X is

recursively compact in (X, ρ, S), by Proposition 3.20 (iii),
{(
τ+s ·hm,n,k

)−1
(Qc

v)
}
(m,s,v,(n,k))∈N3×L

is uni-

formly recursively compact. Note that by property (ii) of {hm,n,k}(m,(n,k))∈N×L and the hypotheses of

Theorem 5.8, we have that
(
τ+s ·hm,n,k

)−1
(Qc

v) ⊆ Yn,k ⊆ Xn for all m, s, v ∈ N, and (n, k) ∈ L. Hence,
since {Tn}n∈N is a sequence of uniformly computable functions with respect to {Xn}n∈N, by Proposi-

tion 3.20 (v), we obtain that
{
Tn
((
τ+s · hm,n,k

)−1
(Qc

v)
)}

(m,s,v,(n,k))∈N3×L
is uniformly recursively com-

pact. Since X is recursively compact, and SQ = {qv}v∈N, by (5.22),
{(
Wn,k

m,s

)−1
(Qc

v)
}
(m,s,v,(n,k))∈N3×L

is uniformly recursively compact. Thus, since
(
Wn,k

m,s

)−1
(Qc

v) =
((
Wn,k

m,s

)−1
(Qv)

)c
for all m, s, v ∈ N,

and (n, k) ∈ L, by Proposition 3.20 (ii), the sequence
{(
Wn,k

m,s

)−1
(Qv)

}
(m,s,v,(n,k))∈N3×L

is uniformly

lower semi-computable open. Hence, it follows from the implication from (ii) to (i) in Proposition 3.16

that
{
Wn,k

m,s

}
(m,s,(n,k))∈N2×L

is a sequence of uniformly upper semi-computable functions.
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We next show that
{
V n,k
m,s

}
(m,s,(n,k))∈N2×L

is a sequence of uniformly lower semi-computable func-

tions. Denote Rv := (qv,+∞) for each v ∈ N. Since
{
τ+s
}
s∈N and {hm,n,k}(m,(n,k))∈N×L are se-

quences of uniformly computable nonnegative functions, and {Jn}n∈N is a sequence of uniformly lower
semi-computable functions with respect to {Yn}n∈N, by (5.20), Definition 3.15, and Proposition 3.23,{
V n,k
m,s

}
(m,s,(n,k))∈N2×L

is a sequence of uniformly lower semi-computable functions with respect to

{Yn}n∈N. Hence, by Proposition 3.16, there exists a sequence
{
Y n,k
m,s,v

}
(m,s,v,(n,k))∈N3×L

of uniformly

lower semi-computable open sets such that
(
V n,k
m,s

)−1
(Rv) ∩ Yn = Y n,k

m,s,v ∩ Yn for all m, s, v ∈ N and
(n, k) ∈ L. Indeed, it is not hard to derive from (5.20) and property (ii) of {hm,n,k}(m,(n,k))∈N×L that

(
V n,k
m,s

)−1
(Rv) =

{
X if qv < 0;

Y n,k
m,s,v ∩ Yn otherwise

for all m, s, v ∈ N, and (n, k) ∈ L. (5.23)

Since {Yn}n∈N and
{
Y n,k
m,s,v

}
(m,s,v,(n,k))∈N3×L

are both uniformly lower semi-computable open in

(X, ρ, S), by Proposition 3.20 (ii), (iii), and Proposition 3.21 (ii), it follows from the recursive com-

pactness of X that
{
Y n,k
m,s,v ∩ Yn

}
(m,s,v,(n,k))∈N3×L

is uniformly lower semi-computable open. Since

SQ = {qv}v∈N, by (5.23),
{(
V n,k
m,s

)−1
(Rv)

}
(m,s,v,(n,k))∈N3×L

is uniformly lower semi-computable open.

Thus, by Proposition 3.16, we conclude that
{
V n,k
m,s

}
(m,s,(n,k))∈N2×L

is a sequence of uniformly lower

semi-computable functions.

Since
{
Wn,k

m,s

}
(m,s,(n,k))∈N2×L

(resp.
{
V n,k
m,s

}
(m,s,(n,k))∈N2×L

) is a sequence of uniformly upper (resp.

lower) semi-computable functions, by Definition 3.15,
{
Wn,k

m,s − V n,k
m,s

}
(m,s,(n,k))∈N2×L

is a sequence of

uniformly upper semi-computable functions. Thus, by Corollary 3.28, (5.21), and Proposition 3.16,

we conclude that
{
Ψn,k

m,s

}
(m,s,n,k)∈N2×L

is uniformly lower semi-computable open in (P(X), Wρ, QS).

This establishes Claim 1.

We now characterize the set M(X,Tn;Yn, Jn) (recall (1.2)).

Claim 2. M(X,Tn;Yn, Jn) = P(X)∖
⋃

(m,s)∈N2

⋃
(n,k)∈Ln

Ψn,k
m,s for each n ∈ N.

Proof of Claim 2. We fix an arbitrary n ∈ N and establish our claim by showing that these two sets
are mutually inclusive for n.

Suppose µ ∈ P(X) ∖
⋃

(m,s)∈N2

⋃
(n,k)∈Ln

Ψn,k
m,s. By (5.21), we have

〈
µ,Wn,k

m,s

〉
⩾
〈
µ, V n,k

m,s

〉
for all

m, s ∈ N, and (n, k) ∈ Ln. Consider an arbitrary (n, k) ∈ Ln. Since Yn,k is admissible for Tn, by
[Ke95, Corollary 15.2], Tn is a Borel isomorphism of Yn,k with Tn(Yn,k). It follows from (5.19) and
(5.20) that∫

Tn(Yn,k)

(
τ+s · hm,n,k

)
◦
(
Tn|Yn,k

)−1
dµ ⩾

〈
µ, Jn · τ+s · hm,n,k

〉
for all m, s ∈ N. (5.24)

Letting m→ +∞ in (5.24) and applying the monotone convergence theorem, we derive from proper-
ties (i) and (ii) of {hm,n,k}(m,(n,k))∈N×L that∫

Tn(Yn,k)
τ+s ◦

(
Tn|Yn,k

)−1
dµ ⩾

∫
Yn,k

(
Jn · τ+s

)
dµ for each s ∈ N. (5.25)

For each A ∈ B(X), we define µ1,n,k(A) := µ(Tn(A∩Yn,k)) and µ2,n,k(A) :=
∫
A∩Yn,k

Jn dµ. Then µ1,n,k

and µ2,n,k are finite Borel measures on X. By the change-of-variable formula and (5.25), we have〈
µ1,n,k, τ

+
s

〉
⩾
〈
µ2,n,k, τ

+
s

〉
for each s ∈ N. By Proposition 3.31, for each A ∈ B(X), µ(Tn(A∩ Yn,k)) ⩾∫

A∩Yn,k
Jn dµ. Thus, since Yn =

⋃
(n,k)∈Ln

Yn,k, we obtain that µ(Tn(A)) ⩾
∫
AJn dµ for each admissible

set A ⊆ Yn for Tn. By (1.2), this implies that µ ∈ M(X,Tn;Yn, Jn).
Conversely, consider an arbitrary µ ∈ M(X,Tn;Yn, Jn). Note that Tn is a Borel isomorphism of

Yn,k with Tn(Yn,k) for each (n, k) ∈ L. Then by (5.19), (5.20), the change-of-variable formula, and
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property (ii) of {hm,n,k}(m,(n,k))∈N×L, we obtain that∫
Wn,k

m,s dµ ⩾
∫
Tn(Yn,k)

(
τ+s · hm,n,k

)
◦
(
Tn|Yn,k

)−1
dµ =

∫
Yn,k

(
τ+s · hm,n,k

)
d
(
µ ◦
(
Tn|Yn,k

))
⩾
∫
Yn,k

(
Jn · τ+s · hm,n,k

)
dµ =

∫ (
Jn · τ+s · hm,n,k

)
dµ =

∫
V n,k
m,s dµ.

for all m, s ∈ N and (n, k) ∈ Ln. By (5.21), this implies that µ /∈ Ψn,k
m,s, establishing Claim 2.

By Proposition 3.9 and Claim 1,
{⋃

(m,s)∈N2

⋃
(n,k)∈Ln

Ψn,k
m,s

}
n∈N is uniformly lower semi-computable

open in (P(X), Wρ, QS). Since X is recursively compact in (X, ρ, S), by Proposition 3.26, we have
that P(X) is recursively compact in (P(X), Wρ, QS). By Proposition 3.20 (iii) and Claim 2, we
conclude that {M(X,Tn;Yn, Jn)}n∈N is uniformly recursively compact in (P(X), Wρ, QS). □

5.3. Applications of Theorem 1.3. In this subsection, we demonstrate how to apply Theorem 1.3
to different systems by constructing appropriate sequences {Kn}n∈N, with the main applications being
Theorems 5.10 and 5.11.

We state the following hypotheses under which we establish our results.

The Assumptions.

(i) Let (X, ρ, S, {Xn}n∈N, {Tn}n∈N) be a uniformly computable system. Let {Yn}n∈N be a se-
quence of open sets and {Jn}n∈N be a sequence of Borel functions that satisfy the hypotheses
of Theorem 5.8.

(ii) Let ϕn : X → R be a bounded Borel function for each n ∈ N.
(iii) For each n ∈ N, properties (i) and (ii) in Theorem 5.6 are satisfied in the case where T := Tn,

Y := Yn, J := Jn, and ϕ := ϕn.

(iv) {Cn}n∈N is a sequence of uniformly recursively compact subsets in (X, ρ, S) such that card(Cn∖
Yn) < +∞ and E0(Tn, ϕn;Yn) ∩ P(X;Cn ∩ Yn) = {µn} for each n ∈ N.6

(v) H and I are nonempty recursively enumerable sets with H ⊆ N × I. Moreover, {pn,i}(n,i)∈H
is a sequence of uniformly computable points such that {pn,i : (n, i) ∈ Hn} is the union of the
set Cn ∖Xn and the set Bn of periodic points of Tn in Cn ∩ (Xn ∖ Yn) whose orbits for Tn are
contained in Cn ∩Xn, where Hn := {(n, i) ∈ H : i ∈ I} for each n ∈ N.

We need the following lemma, whose proof is verbatim the same as that of [LS24b, Lemma 6.3 (iii)].

Lemma 5.9. Let (X, ρ) be a compact metric space, T : X → X be a Borel-measurable transformation,
and µ ∈ M(X,T ). Suppose x ∈ X satisfies µ({x}) > 0. Then x is a periodic point of T . If we assume

in addition that µ is ergodic, then µ = 1
n

∑n−1
i=0 δT i(x), where n is the period of x.

We now consider dynamical systems satisfying the hypotheses of Theorem 1.3 and the Assumptions.
Before detailing the technical statements, we emphasize their applicability to expanding Thurston
maps and rational maps. Specifically, Theorem 5.10 can be applied to establish the computability of
equilibrium states for expanding Thurston maps with Hölder continuous potentials. As a corollary,
Theorem 5.11 directly implies the computability of equilibrium states for rational maps with hyperbolic
Hölder potentials.

However, a full treatment of general potentials requires verifying the computability of the associ-
ated Jacobians, a task that relies on independent techniques such as the cone method introduced in
[BHLZ25, Subsection 4.1]. To demonstrate the efficacy of our approach while avoiding the extensive
technicalities associated with these estimates, we restrict our explicit application in this article to
expanding Thurston maps with the zero potential (see Theorem 1.4).

6For the definition of the set E0(Tn, ϕn;Yn), see (5.16); its existence and uniqueness are discussed immediately
thereafter.
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Theorem 5.10. Under the Assumptions, assume, in addition, that the following statement is true:
There exists a sequence {Un,i,k}((n,i),k)∈H×N of uniformly lower semi-computable open sets in (X, ρ, S)

such that pn,i ∈ Un,i,k for all (n, i) ∈ H and k ∈ N. Moreover, there exists a sequence {tn,i,k}((n,i),k)∈H×N
of uniformly computable real numbers such that for each (n, i) ∈ H,

inf
k∈N

tn,i,k = 0, and µn(Un,i,k) ⩽ tn,i,k for each k ∈ N. (5.26)

Then {µn}n∈N is uniformly computable in (P(X), Wρ, QS).

Proof. Define for each n ∈ N,

Kn := {µ ∈ P(X;Cn) ∩M(X,Tn;Xn) : µ(Un,i,k) ⩽ tn,i,k for all k ∈ N and (n, i) ∈ Hn}. (5.27)

First, we establish the uniformly recursive compactness of {Kn}n∈N as follows.

Claim 1. {Kn}n∈N is uniformly recursively compact in (P(X), Wρ, QS).

Proof of Claim 1. Since (X, ρ, S, {Xn}n∈N, {Tn}n∈N) satisfy the Assumptions, in (X, ρ, S), X
is recursively compact, {Xn}n∈N is uniformly lower semi-computable open, and {Tn}n∈N is a se-
quence of uniformly computable functions with respect to {Xn}n∈N. Thus, by Proposition 3.30,
{M(X,Tn;Xn)}n∈N is uniformly recursively compact in (P(X), Wρ, QS).

Moreover, since in (X, ρ, S), X is recursively compact, and {Cn}n∈N is uniformly recursively com-
pact, by Proposition 3.20 (ii), {X ∖ Cn}n∈N is uniformly lower semi-computable open. Note that by
definition, P(X;Cn) = {µ ∈ P(X) : µ(X∖Cn) ⩽ 0} for each n ∈ N. By Corollary 3.29, {P(X;Cn)}n∈N
is uniformly recursively compact in (P(X), Wρ, QS).

Since in (X, ρ, S),X is recursively compact, {Un,i,k}((n,i),k)∈H×N is uniformly lower semi-computable
open, and {tn,i,k}((n,i),k)∈H×N is a sequence of uniformly computable real numbers, by Corollary 3.29,
{{µ ∈ P(X) : µ(Un,i,k) ⩽ tn,i,k}}((n,i),k)∈H×N is uniformly recursively compact in (P(X), Wρ, QS).
Combined with the uniformly recursive compactness of {P(X;Cn)}n∈N and {M(X,Tn;Xn)}n∈N, by
Proposition 3.21 and (5.27), this implies that {Kn}n∈N is uniformly recursively compact.

Next, we establish the following claim.

Claim 2. M(X,Tn;Yn, Jn) ∩ Kn = {µn} for each n ∈ N.
Proof of Claim 2. We consider an arbitrary n ∈ N and prove our claim for n.
First, we show that

M(X,Tn;Yn, Jn) ∩M(X,Tn;Xn) ∩ P(X;Cn ∩ Yn) = {µn}. (5.28)

Since {Yn}n∈N satisfies the hypotheses of Theorem 1.3, there exist two recursively enumerable sets
K, L with L ⊆ N × K, and a sequence {Yn,k}(n,k)∈L of open sets such that Yn,k is admissible for
Tn for each (n, k) ∈ L. Since L is a recursively enumerable set, there exists a function f : N →
Ln with f(N) = Ln. Define Y ′

m := Yf(m) ∖
⋃m−1

k=1 Yf(k) for each m ∈ N. Then by Definition 5.2,
(X, ρ, Tn, Yn, {Y ′

m}m∈N, µ) is admissible. Note that ϕn is a bounded Borel function by item (ii) in
the Assumptions. Then we have ⟨µ, ϕn⟩ ∈ R for each µ ∈ P(X) and each n ∈ N. Hence, by item (iii)
in the Assumptions and Theorem 5.6, we obtain that M(X,Tn;Yn, Jn)∩M(X,Tn)∩P(X;Cn∩Yn) =
E0(Tn, ϕn;Yn) ∩ P(X;Cn ∩ Yn). Note that Yn ⊆ Xn by item (ii) in the Assumptions. Then by (1.1),
we have M(X,Tn;Xn) ∩ P(X;Cn ∩ Yn) = M(X,Tn) ∩ P(X;Cn ∩ Yn). Thus, by item (iv) in the
Assumptions, we obtain that M(X,Tn;Yn, Jn)∩M(X,Tn;Xn)∩P(X;Cn ∩Yn) = M(X,Tn;Yn, Jn)∩
M(X,Tn) ∩ P(X;Cn ∩ Yn) = E0(Tn, ϕn;Yn) ∩ P(X;Cn ∩ Yn) = {µn}.

Now we prove our claim by showing that these two sets are mutually inclusive. Indeed, by (5.26)
and (5.27), µn ∈ Kn. Hence, by (5.28), we obtain that µn ∈ M(X,Tn;Yn, Jn) ∩ Kn.

Finally, we show that M(X,Tn;Yn, Jn) ∩ Kn ⊆ {µn}. We argue this for n by contradiction and
consider a measure µ ∈ M(X,Tn;Yn, Jn)∩Kn with µ ̸= µn. Then it is not hard to derive from (5.28)
that µ ∈ P(X;Cn)∖P(X;Cn∩Yn). Note that card(Cn∖Yn) < +∞ by item (iv) in the Assumptions.
Thus, since µ ∈ P(X;Cn) ∖ P(X;Cn ∩ Yn), we have µ({x0}) > 0 for some x0 ∈ Cn ∖ Yn. Then
we show that µ ∈ P(X;Xn) ∩ M(X,Tn). By the assumptions in Theorem 5.10, pn,i ∈ Un,i,k for all
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(n, i) ∈ Hn and k ∈ N. Hence, by µ ∈ Kn, it follows from (5.27) that 0 ⩽ µ({pn,i}) ⩽ µ(Un,i,k) ⩽ tn,i,k
for all (n, i) ∈ Hn and k ∈ N. Note that infk∈N tn,i,k = 0 for each (n, i) ∈ Hn by (5.26). Then we
have µ({pn,i}) = 0 for each (n, i) ∈ Hn. Hence, by item (v) in the Assumptions, we obtain that
µ(Cn ∖ Xn) = µ(Bn) = 0. Note that µ ∈ P(X;Cn) ∩ M(X,Tn;Xn) by µ ∈ Kn and (5.27). Then
by (1.1), we have µ ∈ P(X;Xn) ∩ M(X,Tn;Xn) = P(X;Xn) ∩ M(X,Tn). Hence, by Lemma 5.9,
it follows from µ({x0}) > 0 that x0 is a periodic point of Tn in Cn ∩ (Xn ∖ Yn). Moreover, by
µ ∈ P(X;Cn ∩Xn), the orbit of x0 for Tn is contained in Cn ∩Xn. Thus, x0 ∈ Bn by the definition
of Bn. This implies that µ(Bn) ⩾ µ({x0}) > 0, which contradicts with µ(Bn) = 0. Hence, we obtain
that M(X,Tn;Yn, Jn) ∩ Kn ⊆ {µn}. This completes the proof of Claim 2.

By Claims 1 and 2, {Kn}n∈N is uniformly recursively compact and satisfies (1.3). Hence, it follows
from Theorem 1.3 that {µn}n∈N is uniformly computable in (P(X), Wρ, QS). □

We now consider dynamical systems satisfying the hypotheses of Theorem 1.3 and the Assumptions
whose maps Tn are uniformly contracting near all periodic orbits in Bn for Tn.

Theorem 5.11. Under the Assumptions, assume, in addition, that the following statements are true:

(i) Cn ⊆ Xn for each n ∈ N.
(ii) There exists a computable functionm : H → N and two sequences {rn,i}(n,i)∈H and {λn,i}(n,i)∈H

of uniformly computable real numbers such that for each (n, i) ∈ H, m(n, i) is the period of
pn,i for Tn, rn,i > 0, 0 < λn,i < 1, and

ρ
(
pn,i, T

m(n,i)
n (q)

)
⩽ λn,i · ρ(pn,i, q) for each q ∈ B(pn,i, rn,i).

Then {µn}n∈N is a sequence of uniformly computable measures.

Proof. We establish that µn(B(pn,i, rn,i)) = 0 for each (n, i) ∈ H. We consider an arbitrary pair

(n, i) ∈ H and define B(l) := T
lm(n,i)
n (B(pn,i, rn,i)) for each l ∈ N0.

By item (iv) in the Assumptions, it follows from Cn ⊆ Xn that pn,i ∈ Bn ⊆ Cn∩(Xn∖Yn) = Cn∖Yn.
Note that µn ∈ P(X;Cn ∩ Yn) by item (iv) in the Assumptions. Then we have µn({pn,i}) = 0.
Moreover, by the definition of {B(l)}l∈N0 , it follows from µn ∈ E0(Tn, ϕn;Yn) ⊆ M(X,Tn) that
µn(B(0)) ⩽ µn(B(l)) for each l ∈ N0. Since λn,i ∈ (0, 1), we have B(l) ⊆ B

(
pn,i, rn,iλ

l
n,i

)
⊆ B(0)

for each l ∈ N0. Thus, we have µn(B(0)) = µn
(
B
(
pn,i, rn,iλ

l
n,i

))
= µn(B(l)), hence, µn

(
B(0) ∖

B
(
pn,i, rn,iλ

l
n,i

))
= 0. Letting l → +∞, we obtain that µn(B(0) ∖ {pn,i}) = 0. Combined with

µn({pn,i}) = 0, this proves that µn(B(pn,i, rn,i)) = 0.
By Proposition 3.10, it follows from the uniform computability of {rn,i}(n,i)∈H and {pn,i}(n,i)∈H that

{B(pn,i, rn,i)}(n,i)∈H is a sequence of uniformly lower semi-computable open sets in (X, ρ, S).
Therefore, by the above result, the hypotheses of Theorem 5.10 are satisfied with Un,i,k = B(pn,i, rn,i)

and tn,i,k = 0 for each (n, i) ∈ H and each k ∈ N. Hence, it follows from Theorem 5.10 that {µn}n∈N
is uniformly computable in (P(X), Wρ, QS). □

6. Computability of equilibrium states for expanding Thurston maps

In this section, we consider a class of nonuniformly expanding maps on the topological 2-sphere
known as expanding Thurston maps. There has been active research on both thermodynamic formalism
for expanding Thurston maps (see e.g. [BM10, BM17, HP09, Li18, Li15, Li17, LS24b]) and algorithmic
aspects of these maps (see e.g. [SY15, RSY20]).

We first review the definition of expanding Thurston maps, along with some key concepts and re-
sults. Then in Subsection 6.2, we focus on Misiurewicz–Thurston rational maps and apply Approach I
(see Theorem 1.1) to establish Theorem 1.2. Finally, in Subsection 6.3, we study computable expand-
ing Thurston maps whose critical points are computable. By Theorem 6.4, their measure-theoretic
entropy functions may not be upper semicontinuous, which prevents us from using Approach I (see
Theorem 1.1) to demonstrate the computability of their corresponding equilibrium states. Instead, we
apply Approach II (see Theorem 1.3) to prove Theorem 1.4.
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6.1. Expanding Thurston maps. We review some key concepts and results concerning expanding
Thurston maps. For a more thorough treatment of the subject, we refer the reader to the monographs
[BM17, Li17].

Let S2 denote an oriented topological 2-sphere and f : S2 → S2 be a branched covering map. We
denote by degf (x) the local degree of f at x ∈ S2. The degree of f is deg f =

∑
x∈f−1(y) degf (x) for

y ∈ S2 and is independent of y.
A point x ∈ S2 is a critical point of f if degf (x) ⩾ 2. The set of critical points of f is denoted

by crit f . A point y ∈ S2 is a postcritical point of f if y = fn(x) for some x ∈ crit f and n ∈ N.
The set of postcritical points of f is denoted by post f . If card(post f) < +∞, then f is said to be
postcritically-finite.

Definition 6.1 (Thurston maps). A Thurston map is a branched covering map f : S2 → S2 with
deg f ⩾ 2 and card(post f) < +∞.

We can now define expanding Thurston maps.

Definition 6.2 (Expanding Thurston maps). A Thurston map f : S2 → S2 is called expanding
if there exists a metric d on S2 that induces the standard topology on S2 and a Jordan curve C ⊆ S2

containing post f such that

lim
n→+∞

sup
{
diamdX : X is a connected component of f−n

(
S2 ∖ C

)}
= 0.

For an expanding Thurston map f , we can fix a particular metric dv on S2 called a visual metric for
f . Such a metric induces the standard topology on S2 ([BM17, Proposition 8.3]). For the existence
of such a metric, see [BM17, Chapter 8]. For a visual metric dv for f , there exists a unique constant
Λ > 1 called the expansion factor of dv (see [BM17, Chapter 8] for more details).

We summarize the existence and the uniqueness of equilibrium states for expanding Thurston maps
in the following theorem, which is part of [Li18, Theorem 1.1].

Theorem 6.3 (Li [Li18]). Let f : S2 → S2 be an expanding Thurston map, and dv be a visual metric
on S2 for f . Assume that ϕ ∈ C0,α

(
S2, dv

)
is a real-valued Hölder continuous function with an

exponent α ∈ (0, 1]. Then there exists a unique equilibrium state µϕ for f and ϕ.

The main tool used in [Li18] to develop the thermodynamic formalism for expanding Thurston maps
is the Ruelle operator. We recall the definition of the Ruelle operator below and refer the reader to
[Li17, Chapter 3.3] for a detailed discussion.

Let f : S2 → S2 be an expanding Thurston map and ϕ ∈ C
(
S2
)
be a real-valued continuous function.

The Ruelle operator Lϕ (associated with f and ϕ) acting on C
(
S2
)
is given by

Lϕ(u)(x) :=
∑

y∈f−1(x)

degf (y)u(y) exp(ϕ(y)) (6.1)

for each u ∈ C
(
S2
)
. Note that Lϕ is a well-defined and continuous operator on C

(
S2
)
.

Recall that the measure-theoretic entropy function of a continuous map T : X → X defined on a
compact metrizable topological space X is the function µ 7→ hµ(T ) defined on the space M(X,T )
equipped with the weak∗ topology.

The following result regarding the upper semicontinuity of the measure-theoretic entropy function
is established in [LS24b, Theorem 1.1], extending [Li15, Corollary 1.3].

Theorem 6.4 (Li & Shi [LS24b]). Let f : S2 → S2 be an expanding Thurston map. Then the
measure-theoretic entropy function of f is upper semicontinuous if and only if f has no periodic
critical points.
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6.2. Misiurewicz–Thurston rational maps. We apply Theorem 1.1 to show the computability of
equilibrium states for Misiurewicz–Thurston rational maps.

A Misiurewicz–Thurston rational map is a postcritically-finite rational map on the Riemann sphere

Ĉ without periodic critical points. We remark that a postcritically-finite rational map is an expanding
Thurston map (in the sense of Definition 6.2) if and only if it has no periodic critical point (see [BM17,
Proposition 2.3]). To discuss the computability of rational maps, we give a computable structure of

Ĉ as follows.

Proposition 6.5. Let S
(
Ĉ
)
:= {sn}n∈N be an enumeration of Q

(
Ĉ
)
:= {a + bi : a, b ∈ Q} such that

there exists an algorithm that for each n ∈ N, upon input n, outputs p1, q1, r1, p2, q2, r2 ∈ N with

sn = (−1)r1 p1
q1

+(−1)r2 p2
q2
i. Then

(
Ĉ, σ, S

(
Ĉ
))

is a computable metric space in which Ĉ is recursively

compact, where σ is the chordal metric on Ĉ.

The above result immediately follows from Definitions 3.4, 3.24, and Proposition 3.25. We call such

an enumeration given in Proposition 6.5 an effective enumeration of Q
(
Ĉ
)
.

The following result states that there exists an algorithm that computes all zeros of a computable
polynomial (cf. [BY09, Proposition 3.2]; see also [He25, Theorem 3.38]).

Lemma 6.6. Let S
(
Ĉ
)
= {sn}n∈N be an effective enumeration of Q

(
Ĉ
)
:= {a+ bi : a, b ∈ Q}. Then

there exists an algorithm that satisfies the following property:
For all k, l ∈ N, and complex polynomial p of degree k, this algorithm outputs a sequence {qi}ki=1 of

integers such that there exists an enumeration {xi}ki=1 of all the zeros of p (counting with multiplicity)
satisfying that σ

(
sqi , xi

)
< 2−l for each integer 1 ⩽ i ⩽ k, after we input the following data into this

algorithm:

(i) the integers k and l,

(ii) an algorithm computing all the coefficients of the polynomial p.

In this subsection, we investigate computable Misiurewicz–Thurston rational maps, i.e., Misiurewicz–
Thurston rational maps f = h1/h2 for which the coefficients of the polynomials h1, h2 are all com-
putable. Here h1, h2 are two polynomials without common roots. We now design an algorithm to
compute the Ruelle operator Lϕ (recall (6.1)).

Proposition 6.7. There exists an algorithm that satisfies the following property:

For all n, m ∈ N, ϕ, u ∈ C
(
Ĉ, σ

)
, a Misiurewicz–Thurston rational map f = h1/h2, and x ∈

Ĉ ∖
{
f i(∞) : 1 ⩽ i ⩽ m

}
, the algorithm outputs a rational 2−n-approximation of Lm

ϕ (u)(x), given the
following input data:

(i) an algorithm computing the function ϕ : Ĉ → R,
(ii) an algorithm computing the function u : Ĉ → R,
(iii) an algorithm computing all the coefficients of the polynomials h1 and h2.

(iv) an oracle τ : N → N for the point x,

(v) the integers n and m.

Proof. Since we can compute the function Lm
ϕ (u) by iterating the operator Lϕ on the function u, by

(6.1), it suffices to establish the algorithm in the case where m := 1.

First, we consider the preimage of x ∈ Ĉ ∖ {f(∞)} with respect to f and define the polynomial

g(z) := h1(z) − xh2(z) for each z ∈ Ĉ. Since x ̸= f(∞), we have deg(g) = max{deg(h1), deg(h2)} =
deg(f) and can use data (iii) and (iv) to compute all the coefficients of g. By Lemma 6.6, we can
compute all the zeros {yi}ki=1 of g (counting with multiplicity). Since x ̸= f(∞), the zeros {yi}ki=1 of
g correspond precisely to the preimage of x with respect to f (counting with multiplicity). Thus, by



COMPUTABLE THERMODYNAMIC FORMALISM 31

(6.1), we obtain that

Lϕ(u)(x) =
∑

y∈f−1(x)

degf (y)u(y) exp(ϕ(y)) =
k∑

i=1

u(yi) exp(ϕ(yi)).

Note that the exponential function exp: R → R is computable by Example 3.13. Then we can use
data (i) and (ii) to compute the value of Lϕ(u)(x). □

We now prove the computability of the topological pressure P (f, ϕ).

Proposition 6.8. Let f : Ĉ → Ĉ be a computable Misiurewicz–Thurston rational map, dv be a visual

metric on Ĉ for f , and α ∈ (0, 1]. Then there exists an algorithm that for all n ∈ N and ϕ ∈
C0,α

(
Ĉ, dv

)
, outputs a rational 2−n-approximation of P (f, ϕ), after inputting the following data:

(i) an algorithm Φ computing the function ϕ,

(ii) a rational number R with |ϕ|α,dv ⩽ R,

(iii) the integer n.

Proof. First, we design an algorithm MC(Φ, R, n) as follows for each given C ∈ Q. We begin with

computing N ∈ N with N > 2n+1CR. Let S
(
Ĉ
)
= {sn}n∈N be an effective enumeration of Q

(
Ĉ
)
.

Then by computing the distance between ideal points and points in
{
f i(∞) : 1 ⩽ i ⩽ N

}
, we can find

m ∈ N such that sm ∈ Ĉ ∖
{
f i(∞) : 1 ⩽ i ⩽ N

}
. Note that the logarithm function log : R+ → R is

computable by Example 3.13. By employing the algorithm Φ and the algorithm in Proposition 6.7,
we can compute and output the value v such that

|v − w| < 2−n−1, where w := N−1 log
(
LN
ϕ

(
1Ĉ
)
(sm)

)
.

By [Li18, Lemma 5.15], there exists C0 ∈ Q such that∣∣log(Ln
ϕ

(
1Ĉ
)
(x)
)∣∣ ⩽ C0|ϕ|α,dv for all x ∈ Ĉ, n ∈ N0, and ϕ ∈ C0,α

(
Ĉ, σ

)
, (6.2)

where ϕ(x) := ϕ(x)− P (f, ϕ).
Finally, we demonstrate that the algorithm MC0(Φ, R, n) outputs v with |v − P (f, ϕ)| < 2−n.

Indeed, by the definition of MC0(Φ, R, n) and (6.2), we have

|w − P (f, ϕ)| =
∣∣N−1 log

(
e−NP (f,ϕ)LN

ϕ

(
1Ĉ
)
(x0)

)∣∣ < N−1
∣∣log(LN

ϕ

(
1Ĉ
)
(x0)

)∣∣ ⩽ N−1C0R < 2−n−1.

Hence, by |v − w| < 2−n−1, this implies that |v − P (f, ϕ)| < 2−n. □

Now we can apply Theorem 1.1 to prove Theorem 1.2.

Proof of Theorem 1.2. By [Ly83, Corollary 1, p. 379], the measure-theoretic entropy function ν 7→
hν(f) is upper semicontinuous. By the hypothesis of Theorem 1.2, we have E(f, ϕn) = {µn} for each
n ∈ N. Hence, to prove Theorem 1.2, by Theorem 1.1, it suffices to verify that the sequence {ϕn}n∈N
of functions ϕn : Ĉ → R satisfies properties (i) and (ii) in Theorem 1.1 in the case where Tn := f for
each n ∈ N.

We first apply Proposition 6.8 to show the uniform computability of {P (f, ϕn)}n∈N. Since f is a

Misiurewicz–Thurston rational map, by [BM17, Lemma 18.10], the identity map idĈ :
(
Ĉ, dv

)
→
(
Ĉ, σ

)
is a quasisymmetric homeomorphism. Note that

(
Ĉ, σ

)
is a uniformly perfect space. By [Hei01,

Corollary 11.5], the identity map idĈ is Hölder continuous on bounded sets. Hence, by the compactness

of
(
Ĉ, σ

)
, there exist two constants β ∈ (0, 1] and C ∈ Q+ satisfying that

σ(x, y) ⩽ Cdv(x, y)
β for all x, y ∈ Ĉ. (6.3)

Thus, for each n ∈ N, by ϕn ∈ C0,α
(
Ĉ, σ

)
and |ϕn|α,σ ⩽ Qn, we obtain that ϕn ∈ C0,αβ

(
Ĉ, dv

)
and

|ϕn|αβ,dv ⩽ Cα|ϕn|α,σ ⩽ CαQn. Hence, by Proposition 6.8, {P (f, ϕn)}n∈N is a sequence of uniformly
computable real numbers, i.e., {ϕn}n∈N satisfies property (ii) in Theorem 1.1.
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Let S
(
Ĉ
)
= {si}i∈N be an effective enumeration of Q

(
Ĉ
)
. We define for all i ∈ N and x ∈ Ĉ,

f0(x) := 1 and fi(x) := σ(x, si). Denote by D the set of rational linear combinations of finitely many
functions in

{∏m
j=1 fij : m ∈ N and ij ∈ N0 for each integer 1 ⩽ j ⩽ m

}
. By the Stone–Weierstrass

theorem, D is dense in C
(
Ĉ
)
. Since N∗ is a recursively enumerable set, there exists an enumeration

{ψk}k∈N of D such that there exists an algorithm that, for each k ∈ N, on input k, outputs the
following expression of ψk:

ψk =

lk∑
t=1

qk,t

mk,t∏
j=1

fij,k,t , where lk, mk,t, ij,k,t ∈ N0 and qk,t ∈ Q for all j, k, t ∈ N. (6.4)

Thus, since {fi}i∈N0 is a sequence of uniformly computable functions, so is the sequence {ψk}k∈N.
Claim. {P (f, ψk)}k∈N is a sequence of uniformly computable real numbers.

Proof of the claim. By the definition of the chordal metric σ and the function fi, we have fi(x) =

σ(x, si) ⩽ 2 for all i ∈ N0 and x ∈ Ĉ. Thus, since fi ∈ C0,1
(
Ĉ, σ

)
and |fi|1,σ = 1 for each i ∈ N0, we

obtain that for all k, t ∈ N and x, y ∈ Ĉ,∣∣∣∣∣
mk,t∏
j=1

fij,k,t(x)−
mk,t∏
j=1

fij,k,t(y)

∣∣∣∣∣ =
∣∣∣∣∣
mk,t∑
j=1

(
j−1∏
p=1

fip,k,t(x) ·
mk,t∏

q=j+1

fiq,k,t(y) ·
(
fij,k,t(x)− fij,k,t(y)

))∣∣∣∣∣
⩽

mk,t∑
j=1

(
j−1∏
p=1

∣∣fip,k,t(x)∣∣ · mk,t∏
q=j+1

∣∣fiq,k,t(y)∣∣ · ∣∣fij,k,t(x)− fij,k,t(y)
∣∣)

⩽ 2mk,t−1mk,t · σ(x, y).

By (6.4), |ψk|1,σ ⩽
∑lk

t=1 2
mk,t−1mk,t|qk,t| for each k ∈ N. Hence, by Definition 3.12, the function

F : N → R given by F (k) :=
∑lk

t=1 2
mk,t−1mk,t|qk,t| for each k ∈ N is a computable function satisfying

F (k) ⩾ |ψk|1,σ for each k ∈ N. Thus, by (6.3), we have ψk ∈ C0,β
(
Ĉ, dv

)
and |ψk|β,dv ⩽ C|ψk|1,σ ⩽

CF (k) for each k ∈ N. Note that C ∈ Q and F is a computable function. It follows from Proposition 6.8
that {P (f, ψk)}k∈N is a sequence of uniformly computable real numbers. This completes the proof of
the claim.

By the above claim, the sequence {ϕn}n∈N satisfies property (i) in Theorem 1.1. Therefore, by
Theorem 1.1, {µn}n∈N is a sequence of uniformly computable measures. □

6.3. Computable expanding Thurston maps. In this subsection, we focus on computable ex-

panding Thurston maps on Ĉ, i.e., expanding Thurston maps which are computable functions from

the computable metric space
(
Ĉ, σ, S

(
Ĉ
))

to itself, and investigate the computability of measures
of maximal entropy for computable expanding Thurston maps with some additional computability
assumptions.

Before the proof of Theorem 1.4, we establish the following result.

Lemma 6.9. Let (X, ρ, S) be a computable metric space in which X is recursively compact. Suppose
all balls in (X, ρ) are connected. Assume that I is a recursively enumerable set and that {Ui}i∈I is
uniformly lower semi-computable open. Then there exists a recursively enumerable set E ⊆ N× I and
a sequence {Vn,i}(n,i)∈E of uniformly lower semi-computable open sets that are connected such that
Ui =

⋃
(n,i)∈Ei

Vn,i, where Ei := {(n, i) ∈ E : n ∈ N} for each i ∈ I.

Proof. Without loss of generality, we assume that
⋃

i∈I Ui ̸= ∅. Write S = {sn}n∈N. Since {Ui}i∈I
is uniformly lower semi-computable open, by Proposition 3.8, there exists a nonempty recursively
enumerable set E ⊆ N × I such that {sn : (n, i) ∈ Ei} = {sn : n ∈ N} ∩ Ui, where Ei = {(n, i) ∈ E :
n ∈ N} for each i ∈ I. We define Vn,i := B

(
sn, ρ

(
sn, U

c
i

))
for each (n, i) ∈ E. Since all open balls in

(X, ρ) are connected, Vn,i is connected for each (n, i) ∈ E.
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Now we fix i ∈ I and check that Ui =
⋃

(n,i)∈Ei
Vn,i. Indeed, for each (n, i) ∈ Ei, sinceB

(
sn, ρ

(
sn, U

c
i

))
is connected and sn ∈ Ui, we have B

(
sn, ρ

(
sn, U

c
i

))
⊆ Ui. By the definition of {Vn,i}(n,i)∈E , this im-

plies that
⋃

(n,i)∈E Vn,i ⊆ Ui. Then we establish Ui ⊆
⋃

(n,i)∈Ei
Vn,i. We consider an arbitrary x0 ∈ Ui,

and show that x0 ∈ Vn0,i for some n0 ∈ N with (n0, i) ∈ Ei. Since {sn : n ∈ N} is dense in
X and {sn : (n, i) ∈ Ei} = {sn : n ∈ N} ∩ Ui, there exists n0 ∈ N with (n0, i) ∈ Ei such that
ρ(sn0 , x0) < ρ

(
x0, U

c
i

)
/2. Thus, we have x0 ∈ B

(
sn0 , ρ

(
x0, U

c
i

)/
2
)
⊆ B

(
sn0 , ρ

(
x0, U

c
i

)
− ρ
(
x0, sn0

))
⊆

B
(
sn0 , ρ

(
sn0 , U

c
i

))
= Vn0,i. Therefore, we obtain that Ui =

⋃
(n,i)∈Ei

Vn,i for each i ∈ I.

Finally, we show that {Vn,i}(n,i)∈E is uniformly lower semi-computable open. Indeed, since X is

recursively compact, by Proposition 3.20 (iii),
{
U c
i

}
i∈I is uniformly recursively compact. Note that E is

a nonempty recursively enumerable set. Then by Proposition 3.20 (iv), the sequence
{
ρ
(
sn, U

c
i

)}
(n,i)∈E

is uniformly lower semi-computable. Note that for each pair (n, i) ∈ E, Vn,i = B
(
sn, ρ

(
sn, U

c
i

))
by

definition. Then by Proposition 3.10, {Vn,i}(n,i)∈E is uniformly lower semi-computable open. □

To prove Theorem 1.4, we need to recall some notions. Let f : Ĉ → Ĉ be an expanding Thurston

map and C ⊆ Ĉ be a Jordan curve containing post f . For n ∈ N0, we define the set of n-tiles as

Xn(f, C) :=
{
A : A is a connected component of Ĉ ∖ f−n(C)

}
.

For n ∈ N0 and v ∈ f−n(post f), we define the closed n-flower of v as

W
n
(v) :=

⋃
{X : X ∈ Xn(f, C), v ∈ X}.

Proof of Theorem 1.4. Denote by µ0 the unique measure of maximal entropy of f and by ϕ0 the

constant function which equals 0 on Ĉ. Recall that by Proposition 6.5,
(
Ĉ, σ, S

(
Ĉ
))

is a computable

metric space in which Ĉ is recursively compact. Denote by Per(g) the set of periodic points of a map

g : Ĉ → Ĉ.
Now we show that there exists k ∈ N such that fkm(x) = x for all m ∈ N and x ∈ Per

(
fkm

)
∩

post
(
fkm

)
. Indeed, since card(Per(f) ∩ post f) < +∞, there exists k ∈ N such that for all x ∈

Per(f) ∩ post f , we have fk(x) = x. Thus, since Per(fn) ∩ post(fn) ⊆ Per(f) ∩ post f for each n ∈ N,
we have fkm(x) = x for all m ∈ N and x ∈ Per

(
fkm

)
∩ post fkm.

Furthermore, by [BM17, Theorem 15.1] we can find m ∈ N such that there exists an fm-invariant
Jordan curve C ⊆ S2 with post

(
fkm

)
= post f ⊆ C. We set F := fkm and fix such a Jordan curve C.

Then by the previous discussion, we obtain that F (C) ⊆ C and all points in Per(F ) ∩ postF are fixed
points of F .

Claim 1. Item (i) in the Assumptions in Subsection 5.3 holds in the case where (X, ρ, S) :=(
Ĉ, σ, S

(
Ĉ
))
, Xn := Ĉ, Tn := F , Yn := Ĉ ∖ F−1(postF ), and Jn := degF · 1Ĉ for each n ∈ N.

Proof of Claim 1. Indeed, we have previously shown that
(
Ĉ, σ, S

(
Ĉ
))

is a computable metric
space. Since f is computable, by Definition 3.12, {Tn}n∈N, with Tn = F for all n ∈ N, is a sequence
of uniformly computable functions. By [BM17, Lemma 6.5], F is an expanding Thurston map with
postF = post f . Note that all critical points of f are computable by hypothesis. Then by Defi-
nition 3.12, all postcritical points of f are computable. Hence, postF is a finite set of computable
points. Moreover, {Jn}n∈N, with Jn = degF · 1Ĉ for all n ∈ N, is a sequence of uniformly computable
functions which are nonnegative and Borel.

We begin by constructing a recursively enumerable set K and a sequence {Yn,k}(n,k)∈L of uniformly

lower semi-computable open sets, where L = N × K. Now we write S
(
Ĉ
)
= {si}i∈N. Since postF

is a finite set of computable points, by Proposition 3.20 (i), (ii), and (v), Ĉ ∖ postF is a nonempty
lower semi-computable open set. By Proposition 3.8, there exists a recursively enumerable set I ⊆ N
such that Q

(
Ĉ
)
∖ postF = {si : i ∈ I}. We define ri := σ(si, postF ) > 0 for each i ∈ I. Thus,

by Definition 3.3, {ri}i∈I is uniformly computable. Consequently, by Proposition 3.10, {Di}i∈I is
uniformly lower semi-computable open, where Di := B(si, ri) for each i ∈ I. As F is computable,
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F−1(Di)

}
i∈I is also uniformly lower semi-computable. By Lemma 6.9, there exists a recursively

enumerable set K ⊆ N×I and a sequence {Vk}k∈K of uniformly lower semi-computable open sets that
are connected such that

⋃
k∈Ki

Vk = F−1(Di) for each i ∈ I.
Define Yn,k := Vk for all n ∈ N and k ∈ K. Then we check that Yn,k is admissible for Tn, and

Yn,k ⊆ Xn for each (n, k) ∈ L. By definitions, it suffices to show that
⋃

k∈K Vk = Ĉ ∖ F−1(postF )
and Vk is admissible for F for each k ∈ N.

First, we verify that
⋃

k∈K Vk = Ĉ ∖ F−1(postF ). Indeed, by {si : i ∈ I} = Q
(
Ĉ
)
∖ postF ,

card(postF ) < +∞, and the definition of {ri}i∈I , we obtain that
⋃

i∈I Di = Ĉ ∖ postF . Hence, we

have
⋃

k∈K Vk =
⋃

i∈I
⋃

k∈Ki
Vk =

⋃
i∈I F

−1(Di) = F−1
(⋃

i∈I Di

)
= Ĉ ∖ F−1(postF ).

Next, we verify that Vk is admissible for F for each k ∈ K. Now we consider an arbitrary k = (n, i) ∈
K. Since Vk is an open set and F : Ĉ → Ĉ is a Borel-measurable function, by [Ke95, Corollary 15.2],
it suffices to show that F is injective on Vk. Since F is an expanding Thurston map, by [BM17,

Lemma A.11], we obtain that the restriction F |Ĉ∖F−1(postF )
: Ĉ ∖ F−1(postF ) → Ĉ ∖ postF is a

covering map.
Now we demonstrate that the restriction F |F−1(Di) is a covering map onto Di. We fix an arbitrary

x0 ∈ Di. Since F is a finite map, F−1(x0) is a finite set, say {zn : n ∈ [1, b] ∩ N}. Note that Di ⊆
Ĉ ∖ postF and Di is path-connected and locally path-connected. Then by [BM17, Lemma A.6 (ii)],

for each integer 1 ⩽ n ⩽ b, there exists a continuous map hn : Di → Ĉ ∖ F−1(postF ) such that
hn(x0) = zn and F ◦ hn = idDi .

In order to show that for each pair of distinct integers 1 ⩽ l < l′ ⩽ b,

hl(Di) ∩ hl′(Di) = ∅, (6.5)

we argue by contradiction and assume that (6.5) is not true for some pair of distinct integers 1 ⩽
l < l′ ⩽ b. Then there exist z, z′ ∈ Di with hl(z) = hl′(z

′). Hence, z = F (hl(z)) = F (hl′(z
′)) = z′.

Combined with [BM17, Lemma A.6 (i)], this implies that hl = hl′ , which contradicts l < l′. Thus,
(6.5) is true for each pair of distinct integers 1 ⩽ l < l′ ⩽ b.

Then we show that
b⋃

n=1

hn(Di) = F−1(Di). (6.6)

Indeed, since F ◦ hn = idDi for all integer 1 ⩽ n ⩽ b and x ∈ Di, we have hn(Di) ⊆ F−1(Di) for

each integer 1 ⩽ n ⩽ b. Hence, it suffices to show that F−1(Di) ⊆
⋃b

n=1 hn(Di). We consider an

arbitrary y′ ∈ F−1(Di). Then by [BM17, Lemma A.6 (ii)], there exists h : Di → Ĉ∖F−1(postF ) such
that h(F (y′)) = y′ and F ◦ h = idDi . Note that F−1(x0) = {zn : n ∈ [1, b] ∩ N} and F (h(x0)) = x0.
Then there exists an integer n0 ∈ [1, b] satisfying that hn0(x0) = zn0 = h(x0). Combined with [BM17,
Lemma A.6 (i)], this implies that hn0 = h. Thus, we have y′ = h(F (y′)) ⊆ h(Di) = hn0(Di) ⊆⋃b

n=1 hn(Di). Hence, we complete the proof of (6.6).
Since hn is continuous for each integer 1 ⩽ n ⩽ b, by (6.5) and (6.6), we have shown that the

restriction F |F−1(Di) is a covering map onto Di.

Recall that Di is an open ball in Ĉ. Hence, since Ĉ is locally path-connected, all connected compo-
nents of F−1(Di) are always path-connected. Thus, since Di is a simply connected open set, for each
connected component V of F−1(Di), the restriction F |V is a homeomorphism onto Di. Note that Vk is
connected and Vk ⊆ F−1(Di). Then there exists a connected component V of F−1(Di) with V ⊇ Vk.
Thus, F is injective on Vk.

So far we have shown Claim 1.

We can enumerate Per(F )∩postF as a sequence {yi}Ni=1 of uniformly computable (mutually distinct)
points, since it is a finite set of computable points.

We now construct a sequence {Bi}Ni=1 of uniformly lower semi-computable open sets satisfying that

{yi} ⊆ Bi ⊆ W
1
(yi) for each integer 1 ⩽ i ⩽ N . Fix an arbitrary integer 1 ⩽ i ⩽ N . By [BM17,
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Lemma 5.28 (i)], there exists Ri ∈ Q+ such that B(yi, Ri) ⊆ W
1
(yi). Since yi is a computable point,

by Proposition 3.10, Bi := B(yi, Ri) is a lower semi-computable open set with {yi} ⊆ Bi ⊆ W
1
(yi).

Hence, by Definition 3.7, {Bi}Ni=1 is uniformly lower semi-computable open.

Claim 2. Items (ii) to (v) in the Assumptions in Subsection 5.3 hold in the case where (X, ρ, S) :=(
Ĉ, σ, S

(
Ĉ
))
, Xn = Cn := Ĉ, Tn := F, Yn := Ĉ ∖ F−1(postF ), ϕn := ϕ0, Jn := degF · 1Ĉ, Bn :=

Per(F ) ∩ postF for each n ∈ N, I := N ∩ [1, N ], H := N× I, and pn,i := yi for each (n, i) ∈ H.

Proof of Claim 2. Now we verify items (ii) to (v) in the Assumptions in Subsection 5.3.
Item (ii): Since ϕ0 is a constant function, this assumption holds.

Item (iv): Note that Ĉ is recursively compact in (X, ρ, S) by Proposition 6.5. Hence, by defini-

tions, it suffices to show that card
(
F−1(postF )

)
< +∞ and E0

(
F, ϕ0; Ĉ ∖ F−1(postF )

)
∩ P

(
X; Ĉ ∖

F−1(postF )
)
= {µ0}. By Theorem 6.3 and [BM17, Corollary 17.3], we have E(F, ϕ0) = E(f, ϕ0) =

{µ0}. Moreover, it follows from [Li18, Corollary 7.4] that µ0
(
F−1(postF )

)
= µ0(postF ) = 0. Com-

bined with (19.5) in [BM17] and (5.16), this implies that E0
(
F, ϕ0; Ĉ ∖ F−1(postF )

)
= {µ0}.

Item (iii): Since F is an expanding Thurston map, by [BM17, Corollary 17.2], we have htop(F ) =
log(degF ). Suppose h = ϕ0. Then property (i) in Theorem 5.6 is satisfied in the case where T :=

F, Y := Ĉ ∖ F−1(postF ), J := degF · 1Ĉ, and ϕ := ϕ0. Moreover, since F is an expanding Thurston

map, we have card
(
F−1(x) ∖ F−1(postF )

)
= degF for each x ∈ F

(
Ĉ ∖ F−1(postF )

)
. Hence,

property (ii) in Theorem 5.6 is satisfied in the case where T := F, Y := Ĉ ∖ F−1(postF ), and
J := degF · 1Ĉ. This verifies Item (iii) in the Assumptions.

Item (v): Now we demonstrate that Per(F )∩postF is the set of periodic points of F in F−1(postF ),
namely, Per(F )∩ postF = Per(F )∩F−1(postF ). Indeed, this immediately follows from the property
that F (x) = x for each x ∈ Per(F )∩postF . Since {yi}i∈I is uniformly computable, {pn,i}(n,i)∈H , with

pn,i = yi for all (n, i) ∈ H, is also uniformly computable. Moreover, by the definition of {yi}Ni=1, we
have that {pn,i : (n, i) ∈ Hn} = {yi : i ∈ I} = Per(F ) ∩ postF . Therefore, Claim 2 follows.

Claim 3. The additional statement in Theorem 5.10 is true in the case where (X, ρ, S) :=(
Ĉ, σ, S

(
Ĉ
))
, I := N ∩ [1, N ], H := N× I, µn := µ0, and pn,i := yi for each (n, i) ∈ H.

Proof of Claim 3. Recall that {Bi}Ni=1 is uniformly lower semi-computable open and F is a com-
putable function. Define Un,i,1 := Bi and Un,i,k+1 := F−1(Un,i,k)∩Bi recursively for each n, k ∈ N, and
each i ∈ I. Then by Corollary 3.22, we have {Un,i,k}((n,i),k)∈H×N is uniformly lower semi-computable
open. Recall that yi is a fixed point of F and yi ∈ Bi for each i ∈ I. Then we obtain that yi ∈ Un,i,k

for all n, k ∈ N, and i ∈ I.
Next, we set tn,i,k := (degF (yi)/ degF )

k−1 for each n, k ∈ N, and each i ∈ I. Then by [Li17,
Lemma 4.27], degF (yi) < degF for each i ∈ I. Thus, for all n ∈ N and i ∈ I, we obtain that
infk∈N tn,i,k = infk∈N(degF (yi)/ degF )

k = 0. Moreover, since degF (yi)/ degF ∈ Q for each i ∈ I, we
have that {tn,i,k}((n,i),k)∈H×N is a sequence of uniformly computable real numbers.

Finally, we consider an arbitrary pair of n ∈ N and i ∈ I and prove that µ0(Un,i,k) ⩽ tn,i,k for
each k ∈ N. Recall that yi ∈ postF and F (yi) = yi. For each m ∈ N, it follows from [BM17,

Lemma 5.28 (ii)] that card
(
W

m
(yi)
)
= 2(degF (yi))

m. In particular, [BM17, Proposition 5.16] implies

that F
(
W

m+1
(yi)
)
= W

m
(yi) for each m ∈ N. Employing [BM17, Proposition 17.12] and [Li18,

Proposition 7.1] (recall that the Jordan curve C is F -invariant), we deduce that µ0
(
W

m+1
(yi)
)
=

µ0
(
W

m
(yi)
)
·(degF (yi)/ degF ) for eachm ∈ N. Then it follows from the induction that µ0

(
W

m+1
(yi)
)
=

(degF (yi)/ degF )
mµ0

(
W

1
(yi)
)
⩽ (degF (yi)/ degF )

m for each m ∈ N. Since Bi ⊆ W
1
(yi), by the

definition of {Un,i,k}k∈N, Un,i,k ⊆ W
k
(yi) for each k ∈ N. Hence, µ0(Un,i,k) ⩽ µ0

(
W

k
(yi)
)

⩽
(degF (yi)/ degF )

k−1 = tn,i,k for each k ∈ N. Therefore, we have shown Claim 3.
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We are now in a position to complete the proof of Theorem 1.4. By Claims 1, 2, and 3, it follows
from Theorem 5.10 that the constant sequence {µn}n∈N, defined by µn = µ0 for all n ∈ N, is a sequence
of uniformly computable measures. Thus, µ0 is computable. □

As concrete applications of Theorem 1.4, we analyze two expanding Thurston maps g1 and g2 with
periodic critical points. We verify that both maps satisfy the hypotheses of Theorem 1.4, thereby
establishing the computability of their measures of maximal entropy µ1 and µ2 (Corollary 6.10).
Crucially, since both maps have periodic critical points, their measure-theoretic entropy functions fail
to be upper semicontinuous (Theorem 6.4), precluding a direct application of Theorem 1.1.

Our first example g1 is derived from the barycentric subdivision rule as defined in [BM17, Ex-
ample 12.21]. We construct a sphere S△ by gluing two equilateral (Euclidean) triangles along their
boundaries (see Figure 6.1). These two triangles serve as 0-tiles. Subdividing each 0-tile via bisectors
yields six smaller triangles, producing twelve 1-tiles. Recursively, n-tiles are generated by analogously
subdividing (n− 1)-tiles via bisectors, and are Euclidean triangles. The map g1 : S△ → S△ is defined
as a piecewise linear map on S△ in the following way: the orientation-preserving branched covering
map g1 is affine on each 1-tile and maps the 1-tile linearly onto a 0-tile in a way such that g1 is
continuous on S△. Then g1 has a fixed critical point, and the shared boundary of 0-tiles forming a
g1-invariant Jordan curve containing the postcritical set {A, B, C} of g1. It is not difficult to see that
the diameters of n-tiles decay to zero as n tends to +∞, confirming that g1 is an expanding Thurston
map.

g1
S△

A

B CD

EF

G

H

A

B C

Figure 6.1. An expanding Thurston map from the barycentric subdivision rule.

To further demonstrate the scope of Theorem 1.4 while illustrating the complexity of expanding
Thurston maps, we construct a more intricate example g2. The map g2 acts on the same polyhedral
sphere S△ with the postcritical set {A, B, C}. While g1 subdivides each 0-tile into six congruent
smaller triangles, g2 implements a finer subdivision rule: each 0-tile splits into eight triangles following
the structure illustrated in Figure 6.2. Similarly, the orientation-preserving branched covering map
g2 : S△ → S△ is defined as a piecewise linear map on S△ that maps each 1-tile onto a 0-tile linearly.
The map g2 also has a fixed critical point. Recursive iteration of this subdivision generates n-tiles
whose diameters decrease to zero as n tends to +∞, showing that g2 is an expanding Thurston map.

Now we apply Theorem 1.4 to show that their measures of maximal entropy µ1 and µ2 are com-
putable.

We first define the topology of these two equilateral triangles by embedding them into R2. Let
d△ denote the geodesic metric on S△, and let S(S△) be an effective enumeration of the set Q(S△)
of points in S△ with rational coordinates. Moreover, all marked points in Figure 6.1, specifically
A, B, C, D, E, F, G, H, are computable (recall Definition 3.5). Since g1 acts as an affine map on
each 1-tile, we may compute g1(x) for each point x within a 1-tile by applying the corresponding
matrix transformation. By Definition 3.12, this ensures that g1 : S

2 → S2 is computable.
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We next construct a homeomorphism τ : S2 → Ĉ which satisfies that τ and τ−1 are both computable

between computable metric spaces (S△, d△, S(S△)) and
(
Ĉ, σ, S

(
Ĉ
))
. Here we identify Ĉ with the

unit sphere in R3 via stereographic projection, so that the chordal metric σ on Ĉ is the restriction
of the Euclidean metric in R3. Indeed, we consider the map τ which maps the equator of S△ (the

shared boundary of the equilateral triangles) to the equator of Ĉ. More precisely, τ maps the points

A, B, C to the three equally spaced points along the equator of Ĉ and maps the points H, G to the

south pole and the north pole of Ĉ, respectively. For the rest part of S△, the map τ can be defined
by subdivision rule. It is not hard to see that τ and τ−1 are both computable.

Thus, in the computable metric space
(
Ĉ, σ, S

(
Ĉ
))
, the map g̃1 := τ ◦ g1 ◦ τ−1 : Ĉ → Ĉ is com-

putable and all points in crit g̃1 = τ(crit g1) are computable. So far we have verified all conditions in
Theorem 1.4 in the case where f := g̃1. Then by Theorem 1.4, the measure of maximal entropy µ̃1 for
the map g̃1 is computable. Note that µ1(A) = µ̃1(τ(A)) for each A ∈ B(S△). Then the computability
of τ−1 and µ̃1 implies that µ1 is computable.

Similarly, we can verify all conditions in Theorem 1.4 in the case where f := g̃2. Therefore, by a
proof that is verbatim the same as the above, except for replacing g1, g̃1, µ1, µ̃1 with g2, g̃2, µ2, µ̃2, it
follows that µ2 is computable.

g2
S△

A

B CD

EF G
H

IJ

A

B C

Figure 6.2. Expanding Thurston map g2.

Corollary 6.10. For each i ∈ {1, 2}, the measure of maximal entropy of the expanding Thurston map
gi is computable.
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[HP09] Häıssinsky, P. and Pilgrim, K.M., Coarse expanding conformal dynamics. Astérisque 325 (2009),
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