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Abstract. We invesigate the computability of the equilibrium states for a class of nonuniformly
expanding local diffeomorphisms on smooth manifolds and Hölder continuous potentials with not very
large oscillations.
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1. Introduction

1.1. Main results. We study a class of non-uniformly expanding maps considered by Castro and
Varandas in [CV13]. A list of assumptions that are applied in the rest of this paper is displayed below:

The Assumptions.

(i) M is a compact and connected Riemann manifold with distance d.

(ii) The map f : M → M is a local homeomorphism of M with degree deg(f).

(iii) Two continuous functions L : M → R+ and r : M → R+ satisfy that, for each x ∈ M , fx :=
f |B(x,r(x)) : B(x, r(x)) → f(B(x, r(x))), the restriction of f to B(x, r(x)), is invertible and
satisfies that

d(f−1
x (y), f−1

x (z)) ⩽ L(x) d(y, z) for each pair of y, z ∈ f(B(x, r(x))).

(iv) There exists a pair of constants σ > 1 and L ∈ (1, 2), and an open subset A ⊆ M satisfying
that L(x) ⩽ L for each x ∈ A and L(x) < σ−1 for each x /∈ A.

(v) There exists a finite covering {Ui}ni=1 of M by open subsets of injectivity for f such that there
exists an integer q < deg(f) with A ⊆

⋃q
i=1 Ui.

Under the Assumptions, for each δ > 0, we say that δ is acceptable if for each pair x, y ∈ M
with d(x, y) < δ and an enumeration {yi : 1 ⩽ i ⩽ deg(f)} of f−1({y}), there exists a corresponding

enumeration {xi : 1 ⩽ i ⩽ deg(f)} of f−1({x}) such that for these pairs {(xi, yi)}deg(f)i=1 of paired
preimages associated to x and y, the following statements are true:

(i) For each integer 1 ⩽ i ⩽ deg(f), d(xi, yi) ⩽ Ld(x, y).
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(ii) There are at least (deg(f)−q) pairs (xk, yk) satisfy a sharper inequality: d(xk, yk) ⩽ σ−1d(x, y).

According to [CV13, Lemma 3.10], we obtain the existence of acceptable constant δ. Now we state
the following hypothese on the basis of the Assumptions.

The Additional Assumptions.

(vi) There exist two constants c > 0 and 0 < γ < 1 with σ−(1−γ)Lγ < e−2c.

(vii) The constant δ > 0 is acceptable.

(viii) There exists a sequence {xi}m−1
i=1 of points in M such that

⋃m−1
i=1 B(xi, δ/3) = M .

(ix) The constant εϕ ∈ (0, log(deg(f))− log(q)) satisfies that

eεϕ
(
(deg(f)− q)σ−α + qLα(1 + (L− 1)α)

deg(f)

)
+ 2mLαεϕ · diam(M)α < 1.

(x) The function ϕ ∈ C0,α(M,d) satisfies that

sup
z∈M

ϕ(z)− inf
z∈M

ϕ(z) < εϕ and |exp(ϕ)|α < εϕ exp
(
inf
z∈M

ϕ(z)
)
.

We recall [CV13, Theorem A] here.

Theorem 1.1. Under the Assumptions and the Additional Assumptions, there exists a unique equi-
librium state µf,ϕ for f and ϕ.

Now we concern the computability of equilibrium state µf,ϕ for f and ϕ.

Theorem 1.2. Let (M, d, S) be a computable metric space in which M is recursively compact. Then
there exists an algorithm that satisfies the following property:

For each M, f(x), L(x), r(x), σ, L, {Ui}ni=1, q, εϕ, ϕ(x) satisfying the Assumptions and the Addi-
tional Assumptions and each t ∈ N, this algorithm outputs a rational linear combination of finite
dirac measures which are supported on some points in S as a 2−t-approximation in the Wasserstein–
Kantorovich metric Wd for the unique equilibrium state µf,ϕ for f and ϕ, after inputting the following
data in this algorithm:

(i) an algorithm computing the function ϕ : M → R,
(ii) an algorithm computing the map f : M → M ,

(iii) an algorithm computing the function r : M → R+,

(iv) an algorithm computing σ, L, and εϕ,

(v) the integers t, deg(f), and q.

2. Notation

We use N to denote the set of integers greater than or equal to 1 and N∗ :=
⋃

k∈NNk. We write
N0 := {0} ∪ N and N∗

0 := {0} ∪ N∗. We denote by Q+ (resp. R+) the set of all positive rational (resp.
real) numbers. The symbol log denotes the natural logarithm. For x ∈ R, we define ⌊x⌋ as the greatest
integer ⩽ x, and ⌈x⌉ as the smallest integer ⩾ x. The cardinality of a set A is denoted by cardA.

Consider a map f : X → X on a set X. We write fn for the n-th iterate of f , and f−n := (fn)−1,
for each n ∈ N. We set f0 := idX , the identity map on X. For a real-valued function ϕ : X → R, we
write Snϕ(x) = Sf

nϕ(x) :=
∑n−1

m=0 ϕ(f
m(x)) for x ∈ X and n ∈ N0. We omit the superscript f when

the map f is clear from the context. When n = 0, by definition S0ϕ = 0.
Let (X, d) be a metric space. We denote by B(X) the σ-algebra of all Borel subsets of X. For each

subset Y ⊆ X, we denote the diameter of Y by diamd Y := sup{d(x, y) : x, y ∈ Y }, the interior of Y
by int◦ Y , and the characteristic function of Y by 1Y .

For each r ∈ R and each x ∈ X, we denote the open (resp. closed) ball of radius r centered at x
by Bd(x, r) := {y ∈ X : d(x, y) < r}. For each r ∈ R and each nonempty set K ⊆ X, we define
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d(x,K) := infy∈K d(x, y), and Bd(K, r) := {x ∈ X : d(x,K) < r}. We often omit the metric d in the
subscript when it is clear from the context.

For a compact metric space (X, d), we denote by C(X) the space of continuous functions from
X to R, and by M(X) (resp. P(X)) the set of finite signed Borel measures (resp. Borel probability
measures) on X. Let g : X → X be a Borel-measurable transformation. We denote by M(X, g) the set
of g-invariant Borel probability measures on X. Moreover, for each Borel subset C ∈ B(X), P(X;C)
denotes the set {µ ∈ P(X) : µ(C) = 1}. By the Riesz representation theorem, we can identify the
dual of C(X) with the space M(X). For µ ∈ M(X), we use ∥µ∥ to denote the total variation norm
of µ, suppµ to denote the support of µ, and

⟨µ, u⟩ :=
∫
u dµ

for each µ-integrable Borel function u on X. If we do not specify otherwise, we equip C(X) with the
uniform norm ∥ · ∥C(X) := ∥ · ∥∞, and equip M(X), P(X), and M(X, g) with the weak∗ topology.

The space of real-valued Hölder continuous functions with an exponent α ∈ (0, 1] on a compact
metric space (X, d) is denoted as C0,α(X, d). For each ϕ ∈ C0,α(X, d),

|ϕ|α := sup{|ϕ(x)− ϕ(y)|/d(x, y)α : x, y ∈ X, x ̸= y}. (2.1)

For a complete separable metric space (X, d), we recall the Wasserstein–Kantorovich metric Wd on
P(X) given by

Wd(µ, ν) := sup
{
|⟨µ, f⟩ − ⟨ν, f⟩| : f ∈ C0,1(X, d), |f |1 ⩽ 1

}
. (2.2)

Note that for Borel probability measures in P(X), the convergence in Wd is equivalent to the conver-
gence in the weak∗ topology (see e.g. [Vi09, Corollary 6.13]).

3. Preliminaries

3.1. Computable analysis. We recall fundamental notions and results from recursion theory and
computable analysis.1 We present, in order, definitions and results concerning the computability of
real numbers, computable structures on metric spaces, computability of open sets, functions, compact
sets, and probability measures.

Computability over the reals. We begin by reviewing basic notations and concepts from classical
recursion theory; for an introduction, see e.g. [Bri94, Chapter 3].

Definition 3.1 (Effective enumeration and recursively enumerable set). Let S ⊆ N∗ be a
nonempty set. An effective enumeration of S is a sequence {xi}i∈N with S = {xi : i ∈ N} such that
there exists an algorithm that, for each i ∈ N, upon input i, outputs xi.

Moreover, a set I ⊆ N∗ is said to be a recursively enumerable set2 if I = ∅ or there exists an effective
enumeration of I.

For brevity, the symbol I denotes a nonempty recursively enumerable set throughout this subsection.
Note that Nk, for k ∈ N, and N∗ are all recursively enumerable sets by Definition 3.1.

Definition 3.2 (Partial recursive and recursive function). Let {in}n∈N be an effective enumer-
ation of I. We say that f : I → N∗

0 is partial recursive if there exists an algorithm that, for each n ∈ N,
on input n, outputs f(in) if f(in) ∈ N∗, and runs forever otherwise, namely, if f(in) = 0. We say that
f : I → N∗

0 is recursive if f is a partial recursive function with f(I) ⊆ N∗.

We now define the computability of real numbers.

1Our notion of algorithm is consistent with Type-2 machines defined in [We00, Definition 2.1.1].
2We emphasize that recursively enumerable sets in this article are subsets of N∗.
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Definition 3.3 (Computable real number). A real number x is called computable if there exist

three recursive functions f : N → N, g : N → N, and h : N → N such that
∣∣(−1)h(n)f(n)/g(n)−x

∣∣ < 2−n

for all i ∈ I and n ∈ N.
Let {xi}i∈I be a sequence of real numbers. We say that {xi}i∈I is a sequence of uniformly computable

real numbers if there exist three recursive functions f : N× I → N, g : N× I → N, and h : N× I → N
such that

∣∣(−1)h(n,i)f(n, i)/g(n, i)− xi
∣∣ < 2−n for all i ∈ I and n ∈ N.

Clearly, x ∈ R is computable if and only if {xi}i∈N defined by xi := x for all i ∈ N is uniformly
computable. For analogous concepts in the sequel, we will define the uniform sequence version and
regard the individual case as the special case of constant sequences.

Computable metric spaces.

Definition 3.4 (Computable metric space). A computable metric space is a triple (X, ρ, S)
satisfying that

(i) (X, ρ) is a separable metric space,

(ii) S = {sn}n∈N forms a countable dense subset {sn : n ∈ N} of X, and

(iii) {ρ(sm, sn)}(m,n)∈N2 is a sequence of uniformly computable real numbers.

The points in S are called ideal. Since N3 is recursively enumerable, the collection B := {B(si,m/n) :
i, m, n ∈ N} can be enumerated as {Bl}l∈N satisfying the following: there exists an algorithm that,
for each l ∈ N, upon input l, outputs i, m, n ∈ N with Bl = B(si,m/n). We call the elements in B
ideal balls and such an enumeration of B an effective enumeration of ideal balls in (X, ρ, S).

We then define the computability of points in a computable metric space.

Definition 3.5 (Computable point). Let (X, ρ, S) be a computable metric space with S = {si}i∈N,
and {xi}i∈I be a sequence of points in X. Then {xi}i∈I is called uniformly computable (in (X, ρ, S))
if there exists a recursive function f : N× I → N such that ρ

(
sf(n,i), xi

)
< 2−n for all n ∈ N and i ∈ I.

Moreover, a point x in X is computable (in (X, ρ, S)) if {xi}i∈N defined by xi := x for all i ∈ N is
uniformly computable.

We now specify the computable structure on R. Let SQ = {qn}n∈N be the enumeration of Q induced
by an effective enumeration of N3 via the mapping (a, b, c) 7→ (−1)ca/b. Note that {dR(qm, qn)}(m,n)∈N2

is a sequence of uniformly computable real numbers, where dR is the Euclidean metric. Then the triple(
R, dR, SQ

)
forms a computable metric space according to Definition 3.4. A similar construction

provides a computable structure for R+. In this article, we fix these as the standard computability
structures on R and R+. It is clear that under these structures, Definitions 3.3 and 3.5 are equivalent
for the computability of real numbers. That is, a sequence of reals is uniformly computable in one
sense if and only if it is in the other.

We also consider a weaker notion of computability over R that leverages its natural ordered structure.

Definition 3.6 (Semi-computable real number). Let {xi}i∈I be a sequence of real numbers.
We say that {xi}i∈I is uniformly lower (resp. upper) semi-computable if there exist three recur-
sive functions f : N × I → N, g : N × I → N, and h : N × I → N such that for each i ∈ I,{
(−1)h(n,i)f(n, i)/g(n, i)

}
n∈N is non-decreasing (resp. non-increasing) and converges to xi as n → +∞.

Moreover, a real number x is called lower (resp. upper) semi-computable if the sequence {xi}i∈N defined
by xi := x for each i ∈ N is uniformly lower (resp. upper) semi-computable.

Lower semi-computable open sets. We define an effective version of open sets and collect some
relevant results.

Let (X, ρ, S) be a computable metric space. Let B be the set of ideal balls, and {Bl}l∈N be an
effective enumeration of ideal balls in (X, ρ, S). We define the set B0 := B∪{∅} of extended ideal balls
and an enumeration {Dl}l∈N of B0 such that D1 = ∅ and Dl = Bl−1 for each integer l ⩾ 2. We call
such an enumeration an effective enumeration of extended ideal balls in (X, ρ, S).
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Definition 3.7 (Lower semi-computable open set). Let (X, ρ, S) be a computable metric space,
and {Dl}l∈N be an effective enumeration of extended ideal balls. Then a sequence {Ui}i∈I of open
sets in X is said to be uniformly lower semi-computable open (in (X, ρ, S)) if there exists a recursive
function f : N × I → N such that Ui =

⋃
n∈NDf(n,i) for each i ∈ I. Moreover, an open set U ⊆ X is

called lower semi-computable open (in (X, ρ, S)) if the sequence {Ui}i∈N defined by Ui := U for i ∈ N
is uniformly lower semi-computable open.

The above definition of a lower semi-computable open set differs slightly from the ones in [BBRY11,
Definition 3.4] and [BRY14, Definition 2.4]. In our definition, we use extended ideal balls, which
include the empty set ∅.

The term recursively open set in the literature (e.g. [GHR11, Subsection 2.2 and Definition 2.4] and
[HR09, Subsection 3.3]) is equivalent to the notion of lower semi-computable open set defined above.
A detailed discussion of this equivalence is provided in [He25, Subsection 3.3].

Note that we can algorithmically decide whether s ∈ B for each ideal point s ∈ S and each extended
ideal ball B ∈ B0. The following result then follows immediately from Definition 3.7 (see e.g. [He25,
Proposition 3.9]).

Proposition 3.8. Let (X, ρ, S) be a computable metric space with S = {sn}n∈N. Assume that {Ui}i∈I
is uniformly lower semi-computable open. Then there exists a recursively enumerable set E ⊆ N × I
such that {sn : (n, i) ∈ Ei} = {sn : n ∈ N} ∩ Ui, where Ei := {(n, i) ∈ E : n ∈ N} for each i ∈ I.

The following two results are two classical results in computable analysis which both follow imme-
diately from Definitions 3.1 and 3.7 (see e.g. [He25, Propositions 3.10 & 3.11]).

Proposition 3.9. Let (X, ρ, S) be a computable metric space. Assume that H and L are two
nonempty recursively enumerable sets with L ⊆ I ×H, and that {Ui,h}(i,h)∈L is uniformly lower semi-
computable open. Then {

⋃
{Ui,h : (i, h) ∈ Lh}}h∈H is uniformly lower semi-computable open, where

Lh := {(i, h) ∈ L : i ∈ I} for each h ∈ H. In particular, if {Ui}i∈I is uniformly lower semi-computable
open, then

⋃
i∈I Ui is lower semi-computable open.

Proposition 3.10. Let (X, ρ, S) be a computable metric space. Assume that {ri}i∈I is a sequence
of uniformly lower semi-computable real numbers and {xi}i∈I is uniformly computable in (X, ρ, S).
Then {B(xi, ri)}i∈I is uniformly lower semi-computable open.

Computability of functions. We begin with the definition of oracles for points.

Definition 3.11 (Oracle). Let (X, ρ, S) be a computable metric space with S = {si}i∈N, and x ∈ X.
We say that a function τ : N → N is an oracle for x if ρ(sτ(n), x) < 2−n for each n ∈ N.

With the above definition, computable functions can be defined as follows.

Definition 3.12 (Computable function). Let (X, ρ, S) and (X ′, ρ′, S ′) be computable metric
spaces with S = {sn}n∈N and S ′ = {s′n}n∈N. Assume that {in}n∈N is an effective enumeration of I,
and Ci ⊆ X for each i ∈ I. Then a sequence {fi}i∈I of functions fi : X → X ′ is called a sequence
of uniformly computable functions with respect to {Ci}i∈I if there exists an algorithm that, for all
l, n ∈ N, x ∈ Cin , and oracle τ for x, on input l, n, and τ , outputs m ∈ N with ρ′(s′m, fin(x)) < 2−l.
We often omit the phrase “with respect to {Ci}i∈I” when Ci = X for all i ∈ I. Moreover, a function
f : X → X ′ is said to be a computable function on C if {fi}i∈N, defined by fi := f for all i ∈ N, is a
sequence of uniformly computable functions with respect to {Ci}i∈N defined by Ci := C for all i ∈ N.
We often omit the phrase “with respect to C” when C = X.

Computable functions serve as an effective version of continuous functions. The following result
provides examples of computable functions (see e.g. [We00, Examples 4.3.3 and 4.3.13.5]).

Example 3.13. The exponential function exp: R → R and the logarithmic function log : R+ → R are
computable functions.
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We recall the following classical characterization of computable functions (cf. [RY21a, Proposi-
tion 5.2.14] and [BBRY11, Proposition 3.6]; see also [He25, Proposition 3.17]).

Proposition 3.14. Let (X, ρ, S) and (X ′, ρ′, S ′) be computable metric spaces. Suppose {B′
n}n∈N is

an effective enumeration of ideal balls in (X ′, ρ′, S ′). Given fi : X → X ′ and Ci ⊆ X for each i ∈ I,
the following statements are equivalent:

(i) The sequence {fi}i∈I is a sequence of uniformly computable functions with respect to {Ci}i∈I .

(ii) There exists a sequence {Un,i}(n,i)∈N×I of uniformly lower semi-computable open sets in (X, ρ, S)
such that f−1

i (B′
n) ∩ Ci = Un,i ∩ Ci for all i ∈ I and n ∈ N.

(iii) For each nonempty recursively enumerable set M and each sequence {V ′
m}m∈M of uniformly

lower semi-computable open sets, there exists a sequence {Wm,i}(m,i)∈M×I of uniformly lower

semi-computable open sets in (X, ρ, S) such that f−1
i (V ′

m) ∩ Ci = Wm,i ∩ Ci for all m ∈ M
and i ∈ I.

We now define a notion of weaker computability property for functions.

Definition 3.15 (Semi-computable function). Let (X, ρ, S) be a computable metric space, {in}n∈N
be an effective enumeration of I, and Ci ⊆ X for each i ∈ I. A sequence {fi}i∈I of functions fi : X → R
is a sequence of uniformly upper (resp. lower) semi-computable functions with respect to {Ci}i∈I if there
exists an algorithm that, for all l, n ∈ N, x ∈ Cin , and oracle τ for x, on input l, n, and τ , outputs
ql,n,τ ∈ Q such that for each n ∈ N, each x ∈ Cin , and each oracle τ for x, {ql,n,τ}l∈N is non-increasing
(resp. non-decreasing) and converges to fin(x) as l → +∞. We often omit the phrase “with respect
to {Ci}i∈I” when Ci = X for each i ∈ I. Moreover, a function f : X → R is said to be an upper (resp.
a lower) semi-computable function on C if {fi}i∈N defined by fi := f for each i ∈ N, is a sequence of
uniformly upper (resp. lower) semi-computable functions with respect to {Ci}i∈N defined by Ci := C
for all i ∈ N. We often omit the phrase “with respect to C” when C = X.

The following proposition is an immediate consequence of Proposition 3.14 (see e.g. [He25, Propo-
sition 3.19]).

Proposition 3.16. Let (X, ρ, S) be a computable metric space, and SQ = {qn}n∈N. Given fi : X → R
and Ci ⊆ X for all i ∈ I, the following statements are equivalent:

(i) The sequence {fi}i∈I is a sequence of uniformly upper (resp. lower) semi-computable functions
with respect to {Ci}i∈I .

(ii) There exists a sequence {Un,i}(n,i)∈N×I of uniformly lower semi-computable open sets in (X, ρ, S)
such that f−1

i (Qn) ∩ Ci = Un,i ∩ Ci with Qn := (−∞, qn) (resp. Qn := (qn,+∞)) for all i ∈ I
and n ∈ N.

(iii) For each nonempty recursively enumerable set L and each sequence {rl}l∈L of uniformly com-
putable real numbers, there exists a sequence {Wl,i}(l,i)∈L×I of uniformly lower semi-computable

open sets in (X, ρ, S) such that f−1
i (Rl) ∩ Ci = Wl,i ∩ Ci with Rl := (−∞, rl) (resp. Rl :=

(rl,+∞)) for all l ∈ L and i ∈ I.

Recursively compact sets and recursively precompact metric spaces. Here we recall the
definitions of recursive compactness and recursive precompactness. For a more detailed discussion, see
[GHR11, Section 2].

Definition 3.17 (Recursively compact set). Let (X, ρ, S) be a computable metric space with
S = {si}i∈N, and {il}l∈N be an effective enumeration of I. A sequence {Ki}i∈I of compact sets in X is
called uniformly recursively compact (in (X, ρ, S)) if there exists an algorithm that, for each n ∈ N,
each sequence {mn}pn=1 of integers, and each sequence {qn}pn=1 of positive rational numbers, upon
input, halts if and only if Kil ⊆

⋃p
n=1B(smn , qn). Moreover, a set K ⊆ X is called recursively compact



COMPUTABILITY OF EQUILIBRIUM STATES IN HYPERBOLIC SYSTEMS AND BEYOND. 7

(in (X, ρ, S)) if the sequence {Ki}i∈N defined by Ki := K for each i ∈ N, is uniformly recursively
compact.

Note that for each compact set K and each function f : N → N, K ⊆
⋃

n∈NDf(n) if and only if

K ⊆
⋃k

n=1Df(n) for some k ∈ N. This implies the following result.

Proposition 3.18. Let (X, ρ, S) be a computable metric space. Suppose {hm}m∈N (resp. {ln}n∈N) is
an effective enumeration of a nonempty recursively enumerable set H (resp. L). Assume that {Kh}h∈H
is uniformly recursively compact and {Ul}l∈L is uniformly lower semi-computable open. Then there
exists an algorithm that, for all m, n ∈ N, upon input, halts if and only if Khm ⊆ Uln.

We collect some fundamental properties of recursively compact sets (cf. [GHR11, Propositions 1 & 3];
see also [He25, Proposition 3.23]).

Proposition 3.19. Let (X, ρ, S) be a computable metric space. Assume that X is recursively compact,
and {Ki}i∈I is uniformly recursively compact. Then the following statements are true:

(i) Let xi ∈ X for each i ∈ I. Then {xi}i∈I is uniformly computable if and only if the sequence
{{xi}}i∈I of singletons is uniformly recursively compact.

(ii) {X ∖Ki}i∈I is uniformly lower semi-computable open.

(iii) If {Ui}i∈I is uniformly lower semi-computable open, then {Ki∖Ui}i∈I is uniformly recursively
compact.

(iv) If {fi}i∈I is a sequence of uniformly lower (resp. upper) semi-computable functions fi : X → R
with respect to {Ki}i∈I , then {infx∈Ki fi(x)}i∈I (resp. {supx∈Ki

fi(x)}i∈I) is uniformly lower
(resp. upper) semi-computable.

(v) If {Ti}i∈I is a sequence of uniformly computable functions Ti : X → X with respect to {Ki}i∈I ,
then {Ti(Ki)}i∈I is uniformly recursively compact.

Next, we investigate whether the property of uniform computability for recursively compact sets is
preserved under the union and intersection.

Proposition 3.20. Let (X, ρ, S) be a computable metric space. Suppose X is recursively compact, H
and L are two nonempty recursively enumerable sets with L ⊆ I ×H, and {Ki,h}(i,h)∈L is uniformly
recursively compact. Denote Lh := {(i, h) ∈ L : i ∈ I} for each h ∈ H. Then the following statements
are true:

(i) {
⋂
{Ki,h : (i, h) ∈ Lh}}h∈H is uniformly recursively compact.

(ii) If the function F : H → N defined by F (h) := cardLh for h ∈ H is recursive, then {
⋃
{Ki,h :

(i, h) ∈ Lh}}h∈H is uniformly recursively compact.

Proposition 3.20 (i) follows immediately from Proposition 3.9 and Proposition 3.19 (ii) and (iii).
Moreover, Proposition 3.20 (ii) follows from Definition 3.17. As a corollary of Proposition 3.20 (ii),
we obtain the following result.

Moreover, given the recursive compactness of X, the computability of functions is preserved under
a finite number of operations among additions and multiplications. We summarize this property in
the following result (cf. [We00, Corollary 4.3.4]; see also [He25, Proposition 3.26]).

Proposition 3.21. Let (X, ρ, S) be a computable metric space in which X is recursively compact,
and H be a nonempty recursively enumerable set. Assume that {fi}i∈I (resp. {gh}h∈H) is a sequence
of uniformly computable functions fi : X → R (resp. gh : X → R). Then {fi + gh}(i,h)∈I×H , {fi ·
gh}(i,h)∈I×H are two sequences of uniformly computable functions.

Next, we recall the definition of recursively precompact metric space.
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Definition 3.22 (Recursively precompact metric space). Let (X, ρ, S) be a computable metric
space with S = {si}i∈N. Then (X, ρ, S) is called recursively precompact if there exists an algorithm
that, for each n ∈ N, on input n, outputs a finite subset {ri : 1 ⩽ i ⩽ m} of N such that X =⋃m

i=1B(sri , 2
−n).

Finally, we record the following useful characterization of complete recursively precompact metric
spaces (see e.g. [GHR11, Proposition 4]).

Proposition 3.23. Let (X, ρ, S) be a computable metric space. Then X is recursively compact if and
only if (X, ρ) is complete and (X, ρ, S) is recursively precompact.

Computability of probability measures. Building upon the theory of computable functions and
recursively compact sets, we now discuss the computability of probability measures. We begin by
reviewing the computable structure on the measure space P(X) introduced in [HR09, Section 4]
(cf. [HR09, Proposition 4.1.3]; see also [He25, Proposition 3.29]).

Proposition 3.24. Let (X, ρ, S) be a computable metric space with S = {sn}n∈N. Assume that X is
recursively compact in (X, ρ, S). Then the following statements are true:

(i) There exists an enumeration QS = {νk}k∈N of the set of Borel probability measures that are
supported on finitely many points in {sn : n ∈ N} and assign rational values to them such that
there exists an algorithm that, for each k ∈ N, upon input k, outputs a sequence {nl}pl=1 of
integers and a sequence {ql}pl=1 of positive rational numbers satisfying that

∑p
l=1 ql = 1 and

νk =
∑p

l=1 qlδsnl
.

(ii) (P(X), Wρ, QS) is also a computable metric space in which P(X) is recursively compact, where
Wρ is the Wasserstein–Kantorovich metric on P(X) (see (2.2)).

Let (X, ρ, S) be a computable metric space and assume that X is recursively compact. We endow
the measure space P(X) with the computable structure (P(X), Wρ, QS) given by Proposition 3.24.

The computability of measures is then defined via Definition 3.5. Specifically, a sequence {µi}i∈I
of measures in P(X) is a sequence of uniformly computable measures if it is uniformly computable
in (P(X), Wρ, QS), and a single measure µ ∈ P(X) is a computable measure if the corresponding
constant sequence consisting of µ is uniformly computable.

Finally, we prove an effective openness result by generalizing [Zi06, Theorem 18(d)] from Euclidean
spaces to certain computable metric spaces.

Proposition 3.25. Let (X, ρ, S) be a computable metric space, where X is recursively compact and
open balls are connected, and T : X → X be a computable function. Assume that I is a non-empty
recursively enumerable set, and that {Ui}i∈I is a sequence of uniformly lower semi-computable open
sets with the property that T is injective and open on Ui for each i ∈ I. Then {T (Ui)}i∈I is a sequence
of uniformly lower semi-computable open sets.

Proof. Let {qm}m∈N be an effective enumeration of Q+ and S = {sn}n∈N. Since X is recursively
compact, by Definition 3.17, X is compact. Hence, the diameter diamρ(X) of X is finite and X =
B
(
s1, 2 diamρ(X)

)
. Thus, by the hypotheses of Proposition 3.25, X is connected.

First, we consider the case where there is a sequence {xi}i∈I of uniformly computable points and
a sequence {ri}i∈I of uniformly computable real numbers such that for each i ∈ I, we have xi ∈ S,
ri ∈ Q+ ∪ {0}, Ui = B(xi, ri), and that T is injective on B(xi, ri). Then {fi}i∈I , given by fi(x) :=
ρ(x, xi)− ri for all i ∈ I and x ∈ X, is a sequence of uniformly computable functions.

Write Si := (fi)
−1({0}), Bi := B(xi, ri), and Ai := X ∖ Bi for each i ∈ I. Since {Ui}i∈I is a

sequence of uniformly lower semi-computable open sets, by Proposition 3.8, there exists a recursively
enumerable set E ⊆ N × I such that {sn : (n, i) ∈ E} = {sn : n ∈ N} ∩ Ui for each i ∈ I. Consider
an arbitrary (n, i) ∈ E with Si ̸= ∅. Since sn ∈ Ui and T are injective on Bi = Ui ∪ Si, we have that
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T (sn) /∈ T (Si). Note that X is compact. Then for each i ∈ I, by the closeness of Si and the continuity
of T , we have that T (Si) is compact. Hence, ρ(T (sn), T (Si)) > 0.

Claim. Suppose i ∈ I. Then Si = ∅ is equivalent to X ⊆ Ui. Moreover, if Si ̸= ∅, then we have
T (Ui) =

⋃
{B(T (sn), ρ(T (sn), T (Si))) : (n, i) ∈ E}; otherwise T (Ui) = X.

Proof of the claim. First, we consider i ∈ I with ri = 0. Then Si = {xi} and Ui = ∅. Thus,
{n ∈ N : (n, i) ∈ E} = ∅. Hence, T (Ui) = ∅ =

⋃
{B(T (sn), ρ(T (sn), T (Si))) : (n, i) ∈ E}.

Now we consider i ∈ I with ri ∈ Q+. Then Ui ̸= ∅. Indeed, the equivalence between Si = ∅ and
X ⊆ Ui follows from the openness of Ui and Ai, the connectedness of X, and X = Ui ∪ Si ∪Ai.

Then we assume that Si ̸= ∅ and prove that T (Ui) =
⋃
{B(T (sn), ρ(T (sn), T (Si))) : (n, i) ∈ E}.

Denote Bn,i := B(T (sn), ρ(T (sn), T (Si))) for each n ∈ N with (n, i) ∈ E. Fix an arbitrary n ∈ N
with (n, i) ∈ E. Since T is continuous on X, T

(
Bi

)
is a closed set. Thus T

(
Bi

)
= T

(
Bi

)
⊇

T (Ui) ⊇ ∂(T (Ui)). Note that T is open on Ui and Ui is open. Then T (Ui) is also open. Thus,
∂(T (Ui)) ∩ T (Ui) = ∅. Hence ∂(T (Ui)) ⊆ T (Si). Moreover, by the hypotheses of Proposition 3.25,
Bn,i is connected. By construction, we have Bn,i ∩ T (Si) = ∅. Combined with ∂(T (Ui)) ⊆ T (Si), this
implies that Bn,i ∩ ∂(T (Ui)) = ∅. By sn ∈ Ui, we have T (sn) ∈ Bn,i ∩ T (Ui). By the connectedness of
Bn,i, it follows from Bn,i ∩ ∂(T (Ui)) = ∅ that Bn,i ⊆ T (Ui).

Now we establish that for each x ∈ Ui, there exists n ∈ N with T (x) ∈ Bn,i. Since T (Ui) is open and

T (x) ∈ T (Ui), there exists r0 > 0 with B(T (x), r0) ⊆ T (Ui). Note that T is injective on Bi = Ui ∪ Si.
Then T (Ui) ∩ T (Si) = ∅, and thus, B(T (x), r0) ∩ T (Si) = ∅. Since {sn : n ∈ N} is dense in X, and
{sn : (n, i) ∈ E} = {sn : n ∈ N} ∩ Ui, it follows from the openness of Ui that {sn : (n, i) ∈ E}
is dense in Ui. Hence, since T is injective and open on Ui, {T (sn) : (n, i) ∈ E} is dense in T (Ui).
Thus, there exists m ∈ N such that (m, i) ∈ E and ρ(T (sm), T (x)) < r0/2. Hence, we obtain that
T (x) ∈ B(T (sm), r0/2) ⊆ B(T (x), r0). Then we argue that ρ(T (sm), T (Si)) ⩾ r0/2 by contradiction.
Otherwise, we have T (Si) ∩ B(T (sm), r0/2) ̸= ∅, which leads to a contradiction, since B(T (x), r0) ∩
T (Si) = ∅ and B(T (sm), r0/2) ⊆ B(T (x), r0). So far we have shown that ρ(T (sm), T (Si)) ⩾ r0/2.
Thus, by the definition of Bm,i, we have T (x) ∈ B(T (sm), r0/2) ⊆ Bm,i.

Finally, we assume that Si = ∅. Since T is continuous on X and Ui = Bi is compact, T (Ui) is also
compact. Hence, since T (Ui) is open, by the connectedness of X, we obtain T (Ui) = X. We have
completed the proof of the claim.

Now we prove the original statement. By Definition 3.7, R ∖ {0} is a lower semi-computable open
set. Hence, since {fi}i∈I is a sequence of uniformly computable functions, by Proposition 3.14, we
obtain that

{
(fi)

−1(R ∖ {0})
}
i∈I is a sequence of uniformly lower semi-computable open sets in X.

Combining this with Proposition 3.19 (iii) and the fact that Si = X ∖ (fi)
−1(R∖ {0}), we obtain that

{Si}i∈I is a sequence of uniformly recursively compact sets. By Proposition 3.19 (v), it follows from the
computability of T that {T (Si)}i∈I is a sequence of uniformly recursively compact sets. Since {sn}n∈N
is a sequence of uniformly computable points, by Definitions 3.5 and 3.12, {T (sn)}n∈N is a sequence of
uniformly computable points. Hence, {Un,m}n,m∈N is a sequence of uniformly lower semi-computable
open sets, where Un,m := {x ∈ X : ρ(x, T (sn)) > qm} for all n,m ∈ N. By Proposition 3.18, there
exists an algorithm A(n,m, i) which for all n,m ∈ N, and i ∈ I, on input n,m, and i, halts if and only
if T (Si) ⊆ Un,m.

Define the set L ⊆ N2 × I by L :=
{
(n,m, i) ∈ N2 × I : (n, i) ∈ E, and A(n,m, i) halts

}
. By

Definition 3.1, we obtain that L is a recursively enumerable set. Note that {T (sn)}n∈N is a sequence
of uniformly computable points and that {qm}m∈N is an effective enumeration of Q+. Then by Propo-
sition 3.10, {B(T (sn), qm) : (n,m, i) ∈ L} is a sequence of uniformly lower semi-computable open sets.
Thus, it follows from Proposition 3.9 that {Vi}i∈I is a sequence of uniformly lower semi-computable
open sets, where Vi :=

⋃
{B(T (sn), qm) : (n,m, i) ∈ L} for each i ∈ I.

Next, we apply the claim to show that Vi = T (Ui) for each i ∈ I. Indeed, by the definition of
{Un,m}n,m∈N, A(n,m, i) halts if and only if ρ(T (Si), T (sn)) > qm for all n,m ∈ N and i ∈ I. Now
we consider i ∈ I with Si ̸= ∅. Then by the definition of {Vi}i∈I and {Bn,i}(n,i)∈E , it follows from



10 ILIA BINDER, QIANDU HE, ZHIQIANG LI, AND JAQUELINE SIQUEIRA

the claim that Vi =
⋃
{B(T (sn), qm) : (n,m, i) ∈ L} =

⋃
(n,i)∈E

⋃
{B(T (sn), qm) : A(n,m, i) halts} =⋃

(n,i)∈E Bn,i = T (Ui). We turn to consider i ∈ I with Si = ∅. Thus, T (Si) ⊆ Un,m, namely, A(n,m, i)

halts for all n,m ∈ N. Hence, by the definition of {Vi}i∈I and diamρ(X) < +∞, it follows from the
claim that Vi =

⋃
{B(T (sn), qm) : (n,m, i) ∈ L} =

⋃
{B(T (sn), qm) : n,m ∈ N, and (n, i) ∈ E} =

X = T (Ui).
Thus, {T (Ui)}i∈I is a sequence of uniformly lower semi-computable open sets.
Finally, we establish the general case. Let {Dn}n∈N be an effective enumeration of extended ideal

balls in (X, ρ, S). Hence, there exist three recursive functions f : N → N, u : N → N, and v : N → N
such that Dn = B

(
sf(n),

u(n)−1
v(n)

)
for each n ∈ N. Since {Ui}i∈I is a sequence of uniformly lower

semi-computable open sets, by Definition 3.7, there exists a recursive function g : N × I → N such

that Ui =
⋃

n∈NDg(n,i) for each i ∈ I. Now we define xn,m,i := sf(g(n,i)) and rn,m,i :=
(u(g(n,i))−1)m
v(g(n,i))(m+1)

for all n,m ∈ N, and i ∈ I. Then {xn,m,i}n,m∈N,i∈I is a sequence of uniformly computable points
and {rn,m,i}n,m∈N,i∈I is a sequence of uniformly computable real numbers. Note that xn,m,i ∈ S and
rn,m,i ∈ Q+ ∪ {0}. By the hypotheses in Proposition 3.25, T is injective and open on Ui for each

i ∈ I. Then T is injective on B(xn,m,i, rn,m,i) and T is open on B(xn,m,i, rn,m,i) for all n,m ∈ N, and
i ∈ I. Hence, by the discussion in the first case above, we obtain that {T (B(xn,m,i, rn,m,i))}n,m∈N,i∈I
is a sequence of uniformly lower semi-computable open sets. Note that by the constructions, we have
T (Ui) =

⋃
n∈N T

(
Dg(n,i)

)
=

⋃
n,m∈N T (B(xn,m,i, rn,m,i)) for each i ∈ I. Therefore, by Proposition 3.9,

{T (Ui)}i∈I is a sequence of uniformly lower semi-computable open sets. □

3.2. Thermodynamic formalism. We review basic concepts from ergodic theory. For more detailed
discussions, we refer the reader to [Wa82, Section 4].

Let (X,B, µ) be a probability space. A partition ξ = {Ah : h ∈ H} of (X,B, µ) is a disjoint collection
of elements of B whose union is X, where H is a countable index set. For each pair of partitions
ξ = {Ah : h ∈ H} and η = {Bl : l ∈ L} ofX, their join is the partition ξ∨η := {Ah∩Bl : h ∈ H, l ∈ L}.

Assume that T : X → X is a measure-preserving transformation of (X,B, µ). Consider a partition
ξ = {Ah : h ∈ H} of X. For each n ∈ N, T−n(ξ) denotes the partition

{
T−1(Ah) : h ∈ H

}
, and ξnT

denotes the join ξ∨T−1(ξ)∨· · ·∨T−(n−1)(ξ). The entropy of ξ is Hµ(ξ) := −
∑

h∈H µ(Ah) log(µ(Ah)) ∈
[0,+∞], where 0 log 0 is defined to be zero. One can show that if Hµ(ξ) < +∞, then lim

n→+∞
Hµ(ξ

n
T )/n

exists (see e.g. [Wa82, Chapter 4]). We denote this limit by hµ(T, ξ) and call it the measure-theoretic
entropy of T relative to ξ. The measure-theoretic entropy of T for µ is defined as

hµ(T ) := sup{hµ(T, ξ) : ξ is a partition of X with Hµ(ξ) < +∞}. (3.1)

We now introduce thermodynamic formalism, a particular branch of ergodic theory. The main ob-
jects of study are the topological pressure and equilibrium states (see e.g. [PU10, Wa82]; for the general
Borel-measurable setting used in Approach II, see e.g. [IT10, Definition 1.1], [DeT17, Section 2.3], and
[DoT23, Chapter 1.4]).

Let (X, ρ) be a compact metric space, T : X → X be a Borel-measurable transformation such that
M(X,T ) ̸= ∅, and ϕ : X → [−∞,+∞] be a Borel function. Then the topological pressure of the
potential ϕ with respect to the transformation T is given by

P (T, ϕ) := sup
{
hµ(T ) + ⟨µ, ϕ⟩ : µ ∈ M(X,T ) and ⟨µ, ϕ⟩ > −∞

}
. (3.2)

A measure µ ∈ M(X,T ) that attains the supremum in (3.2) is called an equilibrium state for the
transformation T and the potential ϕ. Denote the set of all such measures by E(T, ϕ). In particular,
when the potential ϕ is the constant function 0, we denote htop(T ) := P (T, 0) and say that a measure
µ ∈ M(X,T ) is a measure of maximal entropy of T if µ ∈ E(T, 0).
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4. Proof of Main Results

4.1. Cones and projective metrics. First, we introduce some notations in the cone technique. Let
E be a vector space over R. A convex cone in E is a subset C ⊆ E ∖ {0} satisfying the following
properties:

(i) tu ∈ C for all u ∈ C and t > 0.

(ii) λu+ ηv ∈ C for all u, v ∈ C and λ, η > 0.

(iii)
{
u ∈ E : u ∈ C, −u ∈ C

}
= {0}.

Here C is the set consisting of u ∈ E satisfying that there exists v ∈ C and {tn}n∈N ⊆ R+ satisfying
that u+ tnv ∈ C for each n ∈ N and that tn converges to 0 as n tends to +∞.

Let C be a convex cone. For each pair of u, v ∈ C, we define

A(u, v) := sup {t > 0: v − tu ∈ C} and B(u, v) := inf {s > 0: su− v ∈ C} ,

with the convention sup ∅ = 0 and inf ∅ = +∞, where ∅ denotes the empty set. We have that A(u, v)
is finite, B(u, v) is positive and A(u, v) ⩽ B(u, v) for all u, v ∈ C. Define

Θ(u, v) := log

(
B(u, v)

A(u, v)

)
,

with Θ(u, v) possibly infinity in the case A(u, v) = 0 or B(u, v) = +∞. Note that Θ(u, v) is well-
defined and takes values in [0,+∞]. Since Θ(u, v) = 0 if and only if u = tv for some t > 0, Θ defines
a pseudo-metric on C. In this way, Θ induces a metric on a projective quotient space of C called the
projective metric of C.

Let E1, E2 be vector spaces over R, if L : E1 → E2 is a linear operator, and C1, C2 are convex cones
in E1, E2, respectively, such that L(C1) ⊂ C2, then Θ2(L(u), L(v)) ⩽ Θ1(u, v) for all u, v ∈ C1, where
Θ1 and Θ2 are the projective metrics in C1 and C2, respectively.

In general, L need not be a strict contraction, that will be the case for instance if L(C1) had finite
diameter in C2 according to the next result.

Proposition 4.1. Let C1 (resp. C2) be a convex cone in a vector space E1 (resp. E2) with the projective
metric Θ1 (resp. Θ2), and L : E1 → E2 be a linear operator with L(C1) ⊂ C2. Assume that ∆ :=
diamΘ2(L(C1)) < +∞, then

Θ2(L(u), L(v)) ⩽
(
1− e−∆

)
·Θ1(u, v) for all u, v ∈ C1.

The Ruelle-Perron-Frobenius operator L associated to f : M → M and ϕ : M → R is the linear
operator defined by

L(u)(x) =
∑

y∈f−1(x)

u(y) exp(ϕ(y)) for u ∈ C(M) and x ∈ M. (4.1)

Now we summarize Lemmas 4.1, 6.5, and Theorem B in [VV10] here in our context.

Theorem 4.2. Under the Assumptions and the Additional Assumptions, there exists ν ∈ P(X) with
L∗(ν) = exp(P (f, ϕ)) · ν.

Given α ∈ (0, 1) and δ > 0, we say that a function u : M → R is (C,α)-Hölder continuous in balls
of radius δ if there exists C > 0 satisfying that

|u(x)− u(y)| ⩽ Cd(x, y)α for all x, y ∈ M with d(x, y) < δ. (4.2)

Denote by |u|α,δ the smallest constant C satisfying (4.2).

Lemma 4.3. There exists a computable function F : (1,+∞)× (0, 1) → R such that for each δ > 0, if
u : M → R is (C,α)-Hölder continuous in balls of radius δ, then u is (C(F (l, α)), α)-Hölder continuous
in balls of radius lδ. In particular, |u|α,lδ ⩽ F (l, α)|u|α,δ.
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Remark 4.4. It follows from [CV13, Lemma 3.5] that the above result holds in the case where
F (l, α) = 1 + (l − 1)α, l ∈ (1, 2), and α > 0.

For all α ∈ (0, 1), δ > 0, and k > 0, we define

Cα,δ,k :=
{
u ∈ C(M) : u > 0 and |u|α,δ ⩽ k · inf

x∈M
u(x)

}
. (4.3)

For the cone Cα,δ,k, an explicit expression of its projective metric Θα,δ,k is given in the following lemma
(see [CV13, Lemma 4.2]).

Lemma 4.5. For all α ∈ (0, 1), δ > 0, and k > 0, we have

Θα,δ,k(u, v) = log

(
Bα,δ,k(u, v)

Aα,δ,k(u, v)

)
for all u, v ∈ Cα,δ,k,

where

Aα,δ,k(u, v) := inf
d(x,y)<δ,z∈M

kd(x, y)αv(z)− (v(x)− v(y))

kd(x, y)αu(z)− (u(x)− u(y))

and

Bα,δ,k(u, v) := sup
d(x,y)<δ,z∈M

kd(x, y)αv(z)− (v(x)− v(y))

kd(x, y)αu(z)− (u(x)− u(y))
.

In particular, we have

Aα,δ,k(u, v) ⩽ inf
z∈M

{
v(z)

u(z)

}
and Bα,δ,k(u, v) ⩾ sup

z∈M

{
v(z)

u(z)

}
.

Proposition 4.6. Given α ∈ (0, 1) and k > 0. Suppose δ > 0 and that there exists a sequence {xi}m−1
i=1

of points in M such that
⋃m−1

i=1 B(xi, δ/3) = M . Then we have

sup
z∈M

u(z) ⩽ (1 +m · k · diam(M)α) · inf
z∈M

u(z) for each u ∈ Cα,δ,k.

Proof. By u ∈ Cα,δ,k, we have |u|α,δ ⩽ k · infx∈M u(x). Since M is compact, there exist two points y
and z in M with u(y) = supx∈M u(x) and u(z) = infx∈M u(x). Now we define a graph G = (V,E) by
V = {xi : 1 ⩽ i ⩽ m− 1} and E = {(xi, xk) : 1 ⩽ i, k ⩽ m− 1 and d(xi, xk) < δ}. It follows from the

connectedness of M and
⋃m−1

i=1 B(xi, δ/3) = M that G is a connected graph. Hence, there exists an
integer 2 ⩽ s ⩽ m+ 1 and a sequence {pk}sk=1 of points such that p1 = y, ps = z, and d(pk, pk+1) < δ
for each integer 1 ⩽ k ⩽ s− 1. Thus, we obtain that

|u(y)− u(z)| ⩽
s−1∑
k=1

|u(pk+1)− u(pk)| ⩽
s−1∑
k=1

|u|α,δ · d(pk, pk+1)
α ⩽ (s− 1)|u|α,δ · [diam(M)]α .

Therefore, we have

sup
x∈M

u(x) ⩽ inf
x∈M

u(x) + (s− 1)|u|α,δ · diam(M)α ⩽ inf
x∈M

u(x)(1 +m · k · diam(M)α).

□

Next, we show that for each λ ∈ (0, 1), the cone Cα,δ,λk has a finite Θα,δ,k-diameter.

Proposition 4.7. Given α ∈ (0, 1), δ > 0, k > 0, and λ ∈ (0, 1). Then Cα,δ,λk ⊆ Cα,δ,k. Moreover,
assume that there exists a family of (m− 1) balls of radius δ/3 that covers M . Then we have

diamΘα,δ,k

(
Cα,δ,λk

)
⩽ ∆(α, δ, k, λ), (4.4)

where

∆(α, δ, k, λ) := 2 log

(
1 +m · λ · k · diam(M)α + λ

1− λ

)
. (4.5)
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Proof. By (4.3) and λ ∈ (0, 1), we have Cα,δ,λk ⊆ Cα,δ,k. Let u, v ∈ Cα,δ,λk. By Lemma 4.5, we have

Θα,δ,k(u, v) ⩽ log

(
k · supx∈M v(x) + λ · k · infx∈M v(x)

k · infx∈M v(x)− λ · k · infx∈M v(x)
· k · supx∈M u(x) + λ · k · infx∈M u(x)

k · infx∈M u(x)− λ · k · infx∈M u(x)

)
.

Combining this with Proposition 4.6, we obtain that

Θα,δ,k(u, v) ⩽ log
(1 +m · λ · k · diam(M)α + λ) infx∈M u(x)

(1− λ) infx∈M u(x)

+ log
(1 +m · λ · k · diam(M)α + λ) infx∈M v(x)

(1− λ) infx∈M v(x)

⩽ 2 log

(
1 +m · λ · k · diam(M)α + λ

1− λ

)
= ∆(α, δ, k, λ).

□

Theorem 4.8. Given α ∈ (0, 1), and δ > 0. Under the Assumptions and the Additional Assumptions,
we have L(Cα,δ,k) ⊆ Cα,δ,λk for each k ⩾ (m · diam(M)α)−1, where

λ :=

(
(deg(f)− q)σ−α + qLαF (L,α)

)
· exp

(
εϕ
)

deg(f)
+ 2mLαεϕ · diam(M)α. (4.6)

Proof. Take u ∈ Cα,δ,k and check that L(u) ∈ Cα,δ,λk. Indeed, by (4.3), we have for each x ∈ M ,

L(u)(x) =
∑

y∈f−1(x)

u(y) exp(ϕ(y)) ⩾ deg(f) · inf
z∈M

u(z) · exp
(
inf
z∈M

ϕ(z)
)
> 0. (4.7)

Thus, it suffices to show that L(u) ∈ C(M) and |L(u)|α,δ ⩽ λk infz∈M (L(u)(z)).
Now we consider an arbitrary pair of distinct points x, y ∈ M with d(x, y) < δ. Since δ is acceptable,

there exists a sequence {(xi, yi)}deg(f)i=1 of pairs of paired preimages associated to x and y satisfying
that

d(xi, yi)

d(x, y)
⩽

{
σ−1, 1 ⩽ i ⩽ deg(f)− q

L, otherwise
for each integer 1 ⩽ i ⩽ deg(f). (4.8)

One can see that

|L(u)(x)− L(u)(y)| ⩽
deg(f)∑
i=1

|u(xi) exp(ϕ(xi))− u(yi) exp(ϕ(yi))|

⩽
deg(f)−q∑

i=1

|u(xi)− u(yi)||exp(ϕ(xi))| (4.9)

+

deg(f)∑
i=deg(f)−q+1

|u(xi)− u(yi)||exp(ϕ(xi))| (4.10)

+

deg(f)∑
i=1

|u(yi)||exp(ϕ(xi))− exp(ϕ(yi))|. (4.11)

Now we estimate (4.9), (4.10), and (4.11), respectively.
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For (4.9): By (4.8), we have d(xi, yi) ⩽ σ−1d(x, y) < δ for each integer 1 ⩽ i ⩽ deg(f)− q. Hence,
since u ∈ Cα,δ,k and supz∈M ϕ(z)− infz∈M ϕ(z) < εϕ, by (4.3), we obtain that

(4.9) ⩽ exp
(
sup
z∈M

ϕ(z)
)
·
(deg(f)−q∑

i=1

|u|α,δ · d(xi, yi)α
)

⩽ (deg(f)− q) · exp
(
sup
z∈M

ϕ(z)
)
· |u|α,δ · σ−α · d(x, y)α

⩽ (deg(f)− q) · exp
(
εϕ
)
· exp

(
inf
z∈M

ϕ(z)
)
· k · inf

z∈M
u(z) · σ−α · d(x, y)α

= (deg(f)− q)σ−α · exp
(
εϕ
)
· k · inf

z∈M
u(z) · exp

(
inf
z∈M

ϕ(z)
)
· d(x, y)α.

(4.12)

For (4.10): By (4.8), we have d(xi, yi) ⩽ Ld(x, y) < Lδ for each integer deg(f)− q+1 ⩽ i ⩽ deg(f).
Hence, since u ∈ Cα,δ,k and supz∈M ϕ(z)− infz∈M ϕ(z) < εϕ, by (4.3) and Lemma 4.3, we obtain that

(4.10) ⩽ exp
(
sup
z∈M

ϕ(z)
)
·
( deg(f)∑

i=deg(f)−q+1

|u|α,Lδ · d(xi, yi)α
)

⩽ q · exp
(
sup
z∈M

ϕ(z)
)
· F (L,α) · |u|α,δ · Lα · d(x, y)α

⩽ q · exp
(
εϕ
)
· exp

(
inf
z∈M

ϕ(z)
)
· F (L,α) · k · inf

z∈M
u(z) · Lα · d(x, y)α

= qLαF (L,α) · exp
(
εϕ
)
· k · inf

z∈M
u(z) · exp

(
inf
z∈M

ϕ(z)
)
· d(x, y)α.

(4.13)

For (4.11): By (4.8) and σ−1 < 1 < L, we have d(xi, yi) ⩽ Ld(x, y) for each integer 1 ⩽ i ⩽ deg(f).
Hence, since u ∈ Cα,δ,k, k ⩾ (m · diam(M)α)−1, and |exp(ϕ)|α < εϕ exp(infz∈M ϕ(z)), by (4.3) and
Proposition 4.6, we obtain that

(4.11) ⩽ sup
z∈M

u(z) ·
(deg(f)∑

i=1

|exp(ϕ)|α · d(xi, yi)α
)
·

⩽ deg(f) · sup
z∈M

u(z) · |exp(ϕ)|α · Lα · d(x, y)α

⩽ deg(f) · (1 +m · k · diam(M)α) · inf
z∈M

u(z) · εϕ · exp
(
inf
z∈M

ϕ(z)
)
· Lα · d(x, y)α

⩽ 2mdeg(f)Lαεϕ · diam(M)α · k · inf
z∈M

u(z) · exp
(
inf
z∈M

ϕ(z)
)
· d(x, y)α.

(4.14)

Thus, by (4.12), (4.13), (4.14), and (4.6), we obtain that

|L(u)(x)− L(u)(y)|
k · infz∈M u(z) · exp

(
infz∈M ϕ(z)

)
· d(x, y)α

⩽
(
(deg(f)− q)σ−α + qLαF (L,α)

)
· exp

(
εϕ
)

+ 2m deg(f)Lαεϕ · diam(M)α = λdeg(f).

Combined with (4.7), this implies that

|L(u)(x)− L(u)(y)|
infz∈M (L(u)(z)) · d(x, y)α

⩽
|L(u)(x)− L(u)(y)|

deg(f) · infz∈M u(z) · exp
(
infz∈M ϕ(z)

)
· d(x, y)α

⩽ λk.

Therefore, we obtain that L(u) ∈ C(M) and |L(u)|α,δ ⩽ λk infz∈M (L(u)(z)). □

Theorem 4.9. Given α ∈ (0, 1), and δ > 0. Under the Assumptions and the Additional Assumptions,
in addition we define L0(u) := exp(−P (T, ϕ))L(u) for each u ∈ C(M). Then the sequence {Ln

0 (1)}n∈N
of functions converges to a function h such that L0(h) = h and

∥Ln+1
0 (1)− h∥∞ ⩽ 3(1 +mλk · diam(M)α) · (1− exp(−∆))n ·∆

for each k ⩾ (m · diam(M)α)−1 and each integer n ⩾ − log(∆)
log(1−exp(−∆)) , where ∆ := ∆(α, δ, k, λ).
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Proof. Set hn := Ln
0 (1) for each n ∈ N0. By Theorem 4.8, we have L(Cα,δ,k) ⊆ Cα,δ,λk. Hence, by

definition, we obtain that L0(Cα,δ,k) ⊆ Cα,δ,λk and hn ∈ Cα,δ,λk for each n ∈ N. Then by Proposition 4.1
for the operator L0 : Cα,δ,k → Cα,δ,k, it follows by induction that

Θα,δ,k(hi, hl) ⩽ (1− exp(−∆))n ·Θα,δ,k(hi−n, hl−n) ⩽ (1− exp(−∆))n ·∆ (4.15)

for each n ∈ N and each pair of i, l ∈ N with i, l ⩾ n+ 1.
By Theorem 4.2, there exists ν ∈ P(X) with L∗

0(ν) = ν. Hence, we have ⟨ν, hn⟩ = ⟨ν,1⟩ = 1 for
each n ∈ N0. Thus, by Lemma 4.5, we obtain that

Aα,δ,k(hi, hl) ⩽ inf
z∈M

{
hl(z)

hi(z)

}
⩽ 1 ⩽ sup

z∈M

{
hl(z)

hi(z)

}
⩽ Bα,δ,k(hi, hl). (4.16)

for each pair of i, l ∈ N0. moreover, for each n ∈ N0, by Proposition 4.6, it follows from hn ∈ Cα,δ,λk
that

sup
z∈M

hn(z) ⩽ (1 +mλk · diam(M)α) · inf
z∈M

hn(z) ⩽ 1 +mλk · diam(M)α. (4.17)

Thus, by (4.1), the operator L0 : C(M) → C(M) is continuous under the norm ∥ · ∥∞.
By (4.17) and (4.15), we obtain that

hi(z)− hl(z) ⩽ hi(z) ·
(
hl(z)

hi(z)
− 1

)
⩽ (1 +mλk · diam(M)α) · (Bα,δ,k(hi, hl)− 1)

⩽ (1 +mλk · diam(M)α) · (exp(Θα,δ,k(hi, hl))− 1)

⩽ (1 +mλk · diam(M)α) · (exp((1− exp(−∆))n ·∆)− 1)

(4.18)

for each z ∈ M , each n ∈ N, and each pair of i, l ∈ N with i, l ⩾ n + 1. Then {hn}n∈N0 is a Cauchy
sequence in the norm ∥·∥∞. Hence, {hn}n∈N0 converges to a function h ∈ C(M). Note that ex−1 ⩽ 3x
for each x ∈ [0, 1]. Then by (4.18), it follows from the continuity of the operator L0 that L0(h) = h
and

∥hn+1 − h∥∞ ⩽ (1 +mλk · diam(M)α) · (exp((1− exp(−∆))n ·∆)− 1)

⩽ 3(1 +mλk · diam(M)α) · (1− exp(−∆))n ·∆

for each integer n ⩾ − log(∆)
log(1−exp(−∆)) . □

4.2. Computability of the equilibrium state. In this section we prove the computability of the
equilibrium state µf,ϕ associated to the map f and the potential ϕ satisfying the Assumptions and
the Additional Assumptions.

Before the proof of this theorem, we shall do some preparations. We begin with designing an
algorithm that computes the preimages of f .

Proposition 4.10. Let (M, d, S) be a computable metric space in which M is recursively compact.
Then there exists an algorithm that satisfies the following property:

For each M, f(x), r(x) satisfying items (i) to (iii) in the Assumptions, each x0 ∈ M , each oracle

τ : N → N for x0, and each t ∈ N, this algorithm outputs {yi}deg(f)i=1 satisfying that there exists a
corresponding enumeration {xi : 1 ⩽ i ⩽ deg(f)} of f−1({x0}) such that d(xi, yi) < 2−t for each
integer 1 ⩽ i ⩽ deg(f), after inputting the following data in this algorithm:

(i) an algorithm computing the map f : M → M ,

(ii) an algorithm computing the function r : M → R+,

(iii) the integers t and deg(f),

(iv) the oracle τ .

As an immediate consequence of Proposition 4.10 and the computability of the exponential function,
one gets the computability of the Ruelle–Perron–Frobenius operator in the following sense.
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Corollary 4.11. Let (M, d, S) be a computable metric space in which M is recursively compact. Then
there exists an algorithm that satisfies the following property:

For each M, f(x), r(x), ϕ(x) satisfying items (i) to (iii) in the Assumptions and item (x) in the
Additional Assumptions, each x0 ∈ M , each oracle τ : N → N for x0, each s ∈ N, and each t ∈ N, this
algorithm outputs a rational 2−t-approximation for the value of Ls(1)(x0), after inputting the following
data in this algorithm:

(i) an algorithm computing the map f : M → M ,

(ii) an algorithm computing the function ϕ : M → R,
(iii) an algorithm computing the function r : M → R+,

(iv) the integers s, t, and deg(f),

(v) the oracle τ .

Now we establish the computability of the topological pressure.

Lemma 4.12. Let (M, d, S) be a computable metric space in which M is recursively compact, where
S = {sn}n∈N. Then there exists an algorithm that satisfies the following property:

For each M, f(x), L(x), r(x), σ, L, {Ui}ni=1, q, εϕ, ϕ(x) satisfying the Assumptions and the Ad-
ditional Assumptions and each t ∈ N, this algorithm outputs a rational 2−t-approximation for the
topological pressure P (f, ϕ), after inputting the following data in this algorithm:

(i) an algorithm computing the map f : M → M ,

(ii) an algorithm computing the function ϕ : M → R,
(iii) an algorithm computing the function r : M → R+,

(iv) the integers t and deg(f).

Proof. We can design the algorithm following the steps below:

(1) Compute N ∈ N with N > 2t+1 log 2.

(2) Apply Corollary 4.11 to compute and output the value of

vt ≈ wt := N−1 log
(
LN (1)(s1)

)
with precision 2−t−1.

Let us verify that vt satisfies |vt − P (f, ϕ)| < 2−t for each t ∈ N. To see this, it suffices to check
that |wt − P (f, ϕ)| < 2−t−1 for each t ∈ N.

We set the corresponding integer computed by step (1) to be N and k := (m · diam(M)α)−1. By
Theorem 4.8 and item (ix) in the Additional Assumptions, it follows from 1 ∈ Cα,δ,k that LN

0 (1) ∈
Cα,δ,λk ⊆ Cα,δ,k. By Theorem 4.2, we have

〈
ν,LN

0 (1)
〉
= 1. Hence, by Proposition 4.6 and k =

(m · diam(M)α)−1, we obtain that

1/2 = (1 +mk · diam(M)α)−1 ⩽ inf
z∈M

(
LN
0 (1)(z)

)
⩽ 1 ⩽ sup

z∈M

(
LN
0 (1)(z)

)
⩽ 1 +mk · diam(M)α = 2.

Hence, we can conclude that

|wt − P (f, ϕ)| =
∣∣N−1 log

(
e−NP (T,φ)LN (1)(s1)

)∣∣ = ∣∣N−1 log
(
LN
0 (1)

)∣∣ < (log 2)/N < 2−t−1. □

Recall that in Theorem 4.9, we can demonstrate that the existence of eigenfunction of the normalized
Ruelle–Perron–Frobenius operator.

Lemma 4.13. Let (M, d, S) be a computable metric space in which M is recursively compact, where
S = {sn}n∈N. Then there exists an algorithm that satisfies the following property:

For each M, f(x), L(x), r(x), σ, L, {Ui}ni=1, q, εϕ, ϕ(x) satisfying the Assumptions and the Addi-
tional Assumptions, each x0 ∈ M and each oracle τ : N → N for x0, and each t ∈ N, this algorithm
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outputs a rational 2−t-approximation for the value of h(x0)
3, after inputting the following data in this

algorithm:

(i) an algorithm computing the map f : M → M ,

(ii) an algorithm computing the function ϕ : M → R,
(iii) an algorithm computing the function r : M → R+,

(iv) an algorithm computing σ, L, and εϕ,

(v) the integers t, deg(f), and q.

(vi) the oracle τ

Finally, we review [BHLS25, Theorem 5.10] in our context here.

Theorem 4.14. Let (X, ρ, S, {Xn}n∈N, {Tn}n∈N) be a uniformly computable system with Xn := X
for each n ∈ N. Assume that there exist two recursively enumerable sets K, L with L ⊆ N ×K and
a sequence {Yn,k}(n,k)∈L of uniformly lower semi-computable open sets in (X, ρ, S) such that Yn,k is
admissible for Tn, and X =

⋃
(n,k)∈Ln

Yn,k, where Ln := {(n, k) ∈ L : k ∈ K} for each n ∈ N. Suppose

{ϕn}n∈N is a sequence of uniformly computable functions satisfying that E0(Tn, ϕn) = {µn}. Moreover,
assume that {Jn}n∈N is a sequence of uniformly lower semi-computable functions Jn : X → [0,+∞)
satisfying the following properties:

(i) There exists a sequence {un}n∈N of continuous functions un : X → R such that for each x ∈ X,

Jn(x) = exp(P (Tn, ϕn)− ϕn(x) + un(Tn(x))− un(x)).

(ii)
∑

y∈(Tn)−1(x)

1
Jn(y)

= 1 for each x ∈ X.

Then {µn}n∈N is a sequence of uniformly computable measures.

Proof. By Lemma 4.13 and Theorem 4.14, we obtain Theorem 1.2. □
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