COMPUTABILITY OF EQUILIBRIUM STATES IN HYPERBOLIC SYSTEMS
AND BEYOND.

ILIA BINDER, QIANDU HE, ZHIQIANG LI, AND JAQUELINE SIQUEIRA

ABSTRACT. We invesigate the computability of the equilibrium states for a class of nonuniformly
expanding local diffeomorphisms on smooth manifolds and Hélder continuous potentials with not very
large oscillations.
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1. INTRODUCTION

1.1. Main results. We study a class of non-uniformly expanding maps considered by Castro and
Varandas in [CV13]. A list of assumptions that are applied in the rest of this paper is displayed below:

The Assumptions.

(i) M is a compact and connected Riemann manifold with distance d.
(ii) The map f: M — M is a local homeomorphism of M with degree deg(f).

(iii) Two continuous functions L: M — R and r: M — R* satisfy that, for each z € M, f, =
flB@r@): Blz,r(x)) — f(B(x,r(x))), the restriction of f to B(z,r(z)), is invertible and
satisfies that

d(f7'(v). £7'(2) < L(x) d(y, 2) for each pair of y, 2 € f(B(x,7(x))).
(iv) There exists a pair of constants ¢ > 1 and L € (1, 2), and an open subset A C M satisfying
that L(z) < L for each x € A and L(x) < o~ ! for each z ¢ A.
(v) There exists a finite covering {U;} ; of M by open subsets of injectivity for f such that there
exists an integer ¢ < deg(f) with A C (J!_, U.

Under the Assumptions, for each 6 > 0, we say that ¢ is acceptable if for each pair z, y € M
with d(x,y) < § and an enumeration {y; : 1 < i < deg(f)} of f~1({y}), there exists a corresponding
enumeration {z; : 1 < i < deg(f)} of f~'({z}) such that for these pairs {(xi,yi)}?igl(f) of paired
preimages associated to x and y, the following statements are true:

(i) For each integer 1 < i < deg(f), d(zi,yi) < Ld(z,y).
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(ii) There are at least (deg(f)—q) pairs (21, yx) satisfy a sharper inequality: d(zg,yx) < o~ td(z,y).
According to [CV13| Lemma 3.10], we obtain the existence of acceptable constant §. Now we state
the following hypothese on the basis of the Assumptions.

The Additional Assumptions.
(vi) There exist two constants ¢ > 0 and 0 < y < 1 with 6~ (1=V L7 < ¢,
(vii) The constant § > 0 is acceptable.
(viii) There exists a sequence {z;}™ 7! of points in M such that (J/" ' B(z;,8/3) = M.
(ix) The constant €, € (0,log(deg(f)) — log(q)) satisfies that
o5 ((deg(f) —q)o“+qL(1+(L—1)%)
deg(f)

(x) The function ¢ € C%*(M, d) satisfies that

) +2mL%e, - diam(M)* < 1.

ZSSJ\I/)[ o(2) — Zlél]& #(z) <eg and |exp(@)|a < €4 exp(zigj\g #(2)).

We recall [CV13, Theorem A] here.

Theorem 1.1. Under the Assumptions and the Additional Assumptions, there exists a unique equi-
librium state piy g for f and ¢.

Now we concern the computability of equilibrium state 4 for f and ¢.

Theorem 1.2. Let (M, d, S) be a computable metric space in which M is recursively compact. Then
there exists an algorithm that satisfies the following property:

For each M, f(x), L(x), r(x), o, L, {U;}—,, q, €4, ¢(x) satisfying the Assumptions and the Addi-
tional Assumptions and each t € N, this algorithm outputs a rational linear combination of finite
dirac measures which are supported on some points in S as a 2~ -approzimation in the Wasserstein—
Kantorovich metric Wy for the unique equilibrium state py 4 for f and ¢, after inputting the following
data in this algorithm:

(i) an algorithm computing the function ¢: M — R,

(ii) an algorithm computing the map f: M — M,

)

(iii) an algorithm computing the function r: M — RY,

iv)
)

(iv

(v

an algorithm computing o, L, and 4,
the integers t, deg(f), and q.

2. NOTATION

We use N to denote the set of integers greater than or equal to 1 and N* := (J, NF. We write
No == {0} UN and N := {0} UN*. We denote by Q% (resp. R") the set of all positive rational (resp.
real) numbers. The symbol log denotes the natural logarithm. For x € R, we define |z | as the greatest
integer < x, and [x| as the smallest integer > z. The cardinality of a set A is denoted by card A.

Consider a map f: X — X on a set X. We write f* for the n-th iterate of f, and f=" := (f*)~!,
for each n € N. We set f0 := idy, the identity map on X. For a real-valued function ¢: X — R, we
write Spé(z) = S,{(b(x) = ZZ;IO (f™(z)) for z € X and n € Ny. We omit the superscript f when
the map f is clear from the context. When n = 0, by definition Sy¢ = 0.

Let (X, d) be a metric space. We denote by B(X) the o-algebra of all Borel subsets of X. For each
subset Y C X, we denote the diameter of Y by diam; Y = sup{d(z,y) : =, y € Y}, the interior of Y’
by int, Y, and the characteristic function of Y by 1y.

For each r € R and each € X, we denote the open (resp. closed) ball of radius r centered at x
by By(z,r) = {y € X : d(z,y) < r}. For each r € R and each nonempty set K C X, we define
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d(z, K) = infycg d(z,y), and Bg(K,r) = {z € X : d(z, K) < r}. We often omit the metric d in the
subscript when it is clear from the context.

For a compact metric space (X,d), we denote by C(X) the space of continuous functions from
X to R, and by M(X) (resp. P(X)) the set of finite signed Borel measures (resp. Borel probability
measures) on X. Let g: X — X be a Borel-measurable transformation. We denote by M(X, g) the set
of g-invariant Borel probability measures on X. Moreover, for each Borel subset C' € B(X), P(X;C)
denotes the set {u € P(X) : u(C) = 1}. By the Riesz representation theorem, we can identify the
dual of C(X) with the space M(X). For u € M(X), we use ||u|| to denote the total variation norm
of u, supp i to denote the support of u, and

(= [ud

for each p-integrable Borel function v on X. If we do not specify otherwise, we equip C'(X) with the
uniform norm || - [|¢(x) = || - [|ec, and equip M(X), P(X), and M(X,g) with the weak* topology.

The space of real-valued Holder continuous functions with an exponent a € (0,1] on a compact
metric space (X, d) is denoted as C%®(X,d). For each ¢ € C%*(X,d),

|¢la = sup{|o(x) — (Y)|/d(x,y)* s 2, y € X, x # y}. (2.1)

For a complete separable metric space (X, d), we recall the Wasserstein—-Kantorovich metric Wy on
P(X) given by

W, v) = sup{| (. f) — (v. f)] : f € CON(X.d), | f < 1}. (2.2)

Note that for Borel probability measures in P(X), the convergence in Wy is equivalent to the conver-
gence in the weak* topology (see e.g. [Vi09, Corollary 6.13]).

3. PRELIMINARIES

3.1. Computable analysis. We recall fundamental notions and results from recursion theory and
computable analysisﬂ We present, in order, definitions and results concerning the computability of
real numbers, computable structures on metric spaces, computability of open sets, functions, compact
sets, and probability measures.

Computability over the reals. We begin by reviewing basic notations and concepts from classical
recursion theory; for an introduction, see e.g. [Bri94, Chapter 3.

Definition 3.1 (Effective enumeration and recursively enumerable set). Let S C N* be a
nonempty set. An effective enumeration of S is a sequence {z;}ieny with S = {z; : ¢ € N} such that
there exists an algorithm that, for each ¢ € N, upon input 7, outputs x;.

Moreover, a set I C N* is said to be a recursively enumerable seiﬂ if I = () or there exists an effective
enumeration of I.

For brevity, the symbol I denotes a nonempty recursively enumerable set throughout this subsection.
Note that N*, for k € N, and N* are all recursively enumerable sets by Definition

Definition 3.2 (Partial recursive and recursive function). Let {i,},cn be an effective enumer-
ation of I. We say that f: I — N is partial recursive if there exists an algorithm that, for each n € N,
on input n, outputs f(i,) if f(i,) € N*, and runs forever otherwise, namely, if f(i,) = 0. We say that
f: I — N is recursive if f is a partial recursive function with f(I) C N*.

We now define the computability of real numbers.

LOur notion of algorithm is consistent with Type-2 machines defined in [We00, Definition 2.1.1].
2We emphasize that recursively enumerable sets in this article are subsets of N*.
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Definition 3.3 (Computable real number). A real number z is called computable if there exist
three recursive functions f: N — N, g: N — N, and A: N — N such that ‘(—1)h(")f(n)/g(n)—x‘ <2m
foralli € I and n € N.

Let {x;};c1 be a sequence of real numbers. We say that {x;};cs is a sequence of uniformly computable
real numbers if there exist three recursive functions f: Nx I —- N, g: Nx I >N and h: Nx [ - N
such that |(—=1)"™9 f(n,1)/g(n,i) — ;| < 27" for all i € I and n € N.

Clearly, z € R is computable if and only if {z;};en defined by z; := x for all i € N is uniformly
computable. For analogous concepts in the sequel, we will define the uniform sequence version and
regard the individual case as the special case of constant sequences.

Computable metric spaces.

Definition 3.4 (Computable metric space). A computable metric space is a triple (X, p, S)
satisfying that
(i) (X, p) is a separable metric space,
(ii) S = {sn}nen forms a countable dense subset {s, : n € N} of X, and
(iil) {p(Sm»5n)}mm)en2 is a sequence of uniformly computable real numbers.

The points in S are called ideal. Since N? is recursively enumerable, the collection B := {B(s;,m/n) :
i, m, n € N} can be enumerated as {B;};cn satisfying the following: there exists an algorithm that,
for each [ € N, upon input [, outputs i, m, n € N with B; = B(s;, m/n). We call the elements in B
ideal balls and such an enumeration of B an effective enumeration of ideal balls in (X, p, S).

We then define the computability of points in a computable metric space.

Definition 3.5 (Computable point). Let (X, p, S) be a computable metric space with S = {s; };en,
and {z;}ier be a sequence of points in X. Then {x;};cs is called uniformly computable (in (X, p, S))
if there exists a recursive function f: N x I — N such that p(sf(m),a:i) <2 ™forallneNandie€l.
Moreover, a point = in X is computable (in (X, p, S)) if {z;}ien defined by z; = z for all i € N is
uniformly computable.

We now specify the computable structure on R. Let Sg = {¢n }nen be the enumeration of Q induced
by an effective enumeration of N3 via the mapping (a, b, ¢) — (—1)¢a/b. Note that {dg (¢, qn) } (m,n)en?
is a sequence of uniformly computable real numbers, where dg is the Euclidean metric. Then the triple
(R, dr, S@) forms a computable metric space according to Definition A similar construction
provides a computable structure for R™. In this article, we fix these as the standard computability
structures on R and RT. Tt is clear that under these structures, Definitions and are equivalent
for the computability of real numbers. That is, a sequence of reals is uniformly computable in one
sense if and only if it is in the other.

We also consider a weaker notion of computability over R that leverages its natural ordered structure.

Definition 3.6 (Semi-computable real number). Let {z;};c; be a sequence of real numbers.
We say that {x;}ier is uniformly lower (rvesp. upper) semi-computable if there exist three recur-
sive functions f: Nx I — N, g: N x I — N, and Ah: N x I — N such that for each i € I,
{(—1)h("’i)f(n, i)/g(n, i)}neN is non-decreasing (resp. non-increasing) and converges to x; as n — +00.
Moreover, a real number z is called lower (resp. upper) semi-computable if the sequence {x; };en defined
by z; := x for each i € N is uniformly lower (resp. upper) semi-computable.

Lower semi-computable open sets. We define an effective version of open sets and collect some
relevant results.

Let (X, p, S) be a computable metric space. Let B be the set of ideal balls, and {B;};en be an
effective enumeration of ideal balls in (X, p, §). We define the set By := BU{0} of extended ideal balls
and an enumeration {D;};en of By such that D1 = () and D; = B;_; for each integer [ > 2. We call
such an enumeration an effective enumeration of extended ideal balls in (X, p, S).
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Definition 3.7 (Lower semi-computable open set). Let (X, p, S) be a computable metric space,
and {D;}ien be an effective enumeration of extended ideal balls. Then a sequence {U;}ier of open
sets in X is said to be uniformly lower semi-computable open (in (X, p, S)) if there exists a recursive
function f: N x I — N such that U; = U,,cy Df(n,i) for each i € I. Moreover, an open set U C X is
called lower semi-computable open (in (X, p, S)) if the sequence {U;};cn defined by U; .= U for i € N
is uniformly lower semi-computable open.

The above definition of a lower semi-computable open set differs slightly from the ones in [BBRY11],
Definition 3.4] and [BRY14, Definition 2.4]. In our definition, we use extended ideal balls, which
include the empty set (.

The term recursively open set in the literature (e.g. [GHR11, Subsection 2.2 and Definition 2.4] and
[HRO9, Subsection 3.3]) is equivalent to the notion of lower semi-computable open set defined above.
A detailed discussion of this equivalence is provided in [He25 Subsection 3.3].

Note that we can algorithmically decide whether s € B for each ideal point s € § and each extended
ideal ball B € By. The following result then follows immediately from Definition (see e.g. [He25,
Proposition 3.9]).

Proposition 3.8. Let (X, p, S) be a computable metric space with S = {sy }nen. Assume that {U;}icr
18 uniformly lower semi-computable open. Then there exists a recursively enumerable set E C N x [
such that {s, : (n,i) € E;} = {sy, : n € N} NU;, where E; .= {(n,i) € E:n € N} for eachi € I.

The following two results are two classical results in computable analysis which both follow imme-

diately from Definitions and (see e.g. [He25, Propositions 3.10 & 3.11)).

Proposition 3.9. Let (X, p, S) be a computable metric space. Assume that H and L are two
nonempty recursively enumerable sets with L C I x H, and that {Ui,h}(@h)eL s uniformly lower semi-
computable open. Then {{J{Uin : (i,h) € Lp}}hen is uniformly lower semi-computable open, where
Ly ={(i,h) € L:i € I} for each h € H. In particular, if {U;}icr is uniformly lower semi-computable

open, then | J;c; Ui is lower semi-computable open.

Proposition 3.10. Let (X, p, S) be a computable metric space. Assume that {r;}icr is a sequence

of uniformly lower semi-computable real numbers and {x;}icr is uniformly computable in (X, p, S).
Then {B(x;, ;) }ier is uniformly lower semi-computable open.

Computability of functions. We begin with the definition of oracles for points.

Definition 3.11 (Oracle). Let (X, p, §) be a computable metric space with S = {s; };en, and z € X.
We say that a function 7: N — N is an oracle for x if p(s;(,), ) < 27" for each n € N.

With the above definition, computable functions can be defined as follows.

Definition 3.12 (Computable function). Let (X, p, §) and (X', p/, §’) be computable metric
spaces with § = {s,}nen and &’ = {8, }pen. Assume that {i, }nen is an effective enumeration of I,
and C; C X for each i € I. Then a sequence {f;}ics of functions f;: X — X’ is called a sequence
of uniformly computable functions with respect to {C;}ier if there exists an algorithm that, for all
I,n €N, 2z € C;,, and oracle 7 for x, on input [, n, and 7, outputs m € N with p/(s},, f;, (z)) < 27%.
We often omit the phrase “with respect to {C;};c;” when C; = X for all i € I. Moreover, a function
f: X — X' is said to be a computable function on C if {f;}icn, defined by f; == f for all i € N, is a
sequence of uniformly computable functions with respect to {C;};en defined by C; := C for all i € N.
We often omit the phrase “with respect to C” when C = X.

Computable functions serve as an effective version of continuous functions. The following result
provides examples of computable functions (see e.g. [We00, Examples 4.3.3 and 4.3.13.5]).

Example 3.13. The exponential function exp: R — R and the logarithmic function log: Rt — R are
computable functions.



6 ILIA BINDER, QIANDU HE, ZHIQIANG LI, AND JAQUELINE SIQUEIRA

We recall the following classical characterization of computable functions (cf. [RY2Ial Proposi-
tion 5.2.14] and [BBRY11l, Proposition 3.6]; see also [He25, Proposition 3.17]).

Proposition 3.14. Let (X, p, S) and (X', p/, 8'") be computable metric spaces. Suppose {B],}neN is
an effective enumeration of ideal balls in (X', p', 8"). Given f;: X — X' and C; C X for each i € I,
the following statements are equivalent:

(i) The sequence {fi}icr is a sequence of uniformly computable functions with respect to {C;}icr.

(ii) There exists a sequence {Uni}(ni)enxs of uniformly lower semi-computable open sets in (X, p, S)
such that fz-_l(B;) NC; =U,;NC; forallie I and n € N.

(iii) For each nonempty recursively enumerable set M and each sequence {V, }menr of uniformly
lower semi-computable open sets, there exists a sequence {Wi i} m.iyenmxr of uniformly lower
semi-computable open sets in (X, p, S) such that f;l(V,;) NC; = Wy NGy for allm € M
and i € I.

We now define a notion of weaker computability property for functions.

Definition 3.15 (Semi-computable function). Let (X, p, S) be a computable metric space, {i, }nen
be an effective enumeration of I, and C; C X for each i € I. A sequence { f;}ics of functions f;: X — R

is a sequence of uniformly upper (resp. lower) semi-computable functions with respect to {C;}icr if there

exists an algorithm that, for all [, n € N, x € C;,, and oracle 7 for x, on input [, n, and 7, outputs

Qin, € Q such that for each n € N, each « € C;,, and each oracle 7 for , {q; » - }icn is non-increasing

(resp. non-decreasing) and converges to f; (z) as | — +oo. We often omit the phrase “with respect

to {C;}icr” when C; = X for each i € I. Moreover, a function f: X — R is said to be an upper (resp.

a lower) semi-computable function on C if {f;}ien defined by f; :== f for each i € N, is a sequence of
uniformly upper (resp. lower) semi-computable functions with respect to {C;};en defined by C; == C

for all ¢ € N. We often omit the phrase “with respect to C” when C' = X.

The following proposition is an immediate consequence of Proposition (see e.g. [He25, Propo-
sition 3.19]).

Proposition 3.16. Let (X, p, S) be a computable metric space, and Sg = {qn }nen. Given fi: X — R
and C; C X for alli € I, the following statements are equivalent:

(i) The sequence {f;}icr is a sequence of uniformly upper (resp. lower) semi-computable functions
with respect to {C;}ier-

(ii) There exists a sequence {Uni}(ni)enxs of uniformly lower semi-computable open sets in (X, p, S)
such that fi_l(Qn) NC; = U, NC; with Qy == (—00,qyn) (resp. Qn = (gn, +00)) for alli € I
and n € N.

(iii) For each nonempty recursively enumerable set L and each sequence {r;}icr of uniformly com-
putable real numbers, there exists a sequence {Wy;}qiyerxr of uniformly lower semi-computable
open sets in (X, p, S) such that f;1(R)) N C; = Wi,; N C; with Ry == (—o0,r;) (resp. Ry =
(ry,4+00)) foralll € L and i € I.

Recursively compact sets and recursively precompact metric spaces. Here we recall the
definitions of recursive compactness and recursive precompactness. For a more detailed discussion, see
[GHR11) Section 2].

Definition 3.17 (Recursively compact set). Let (X, p, S) be a computable metric space with
S = {si}ien, and {7 }ien be an effective enumeration of I. A sequence {K;}ier of compact sets in X is
called uniformly recursively compact (in (X, p, S)) if there exists an algorithm that, for each n € N,
each sequence {m,}_; of integers, and each sequence {g,}!_; of positive rational numbers, upon
input, halts if and only if K;, € | J_; B(sm,,, qn). Moreover, a set K C X is called recursively compact
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(in (X, p, 8)) if the sequence {K;};en defined by K; := K for each i € N, is uniformly recursively
compact.

Note that for each compact set K and each function f: N — N, K C |, oy Dy(n) if and only if
K C Uflzl Dy for some k € N. This implies the following result.

Proposition 3.18. Let (X, p, S) be a computable metric space. Suppose {hm}men (resp. {ln}nen) is
an effective enumeration of a nonempty recursively enumerable set H (resp. L). Assume that {Kp}hen
is uniformly recursively compact and {U;}ier is uniformly lower semi-computable open. Then there
exists an algorithm that, for all m, n € N, upon input, halts if and only if Ky,, C U;,,.

We collect some fundamental properties of recursively compact sets (cf. [GHR11, Propositions 1 & 3];
see also [He25| Proposition 3.23]).

Proposition 3.19. Let (X, p, S) be a computable metric space. Assume that X is recursively compact,
and {K;}ier is uniformly recursively compact. Then the following statements are true:

(i) Let x; € X for each i € I. Then {x;}ics is uniformly computable if and only if the sequence
{{zi}}icr of singletons is uniformly recursively compact.

(i1) {X \ K;}ier ts uniformly lower semi-computable open.

(i) If {Ui}ier is uniformly lower semi-computable open, then {K;\ U, }icr is uniformly recursively
compact.

(iv) If {fi}ier is a sequence of uniformly lower (resp. upper) semi-computable functions f;: X — R
with respect to {K;}ier, then {infrek, fi(x)}icr (resp. {sup,ck, fi(x)}ier) is uniformly lower
(resp. upper) semi-computable.

(v) If{T;}icr is a sequence of uniformly computable functions T;: X — X with respect to {K;}ier,
then {T;(K;) }ier is uniformly recursively compact.

Next, we investigate whether the property of uniform computability for recursively compact sets is
preserved under the union and intersection.

Proposition 3.20. Let (X, p, S) be a computable metric space. Suppose X is recursively compact, H
and L are two nonempty recursively enumerable sets with L C I x H, and {Ki,h}(i,h)eL 18 uniformly
recursively compact. Denote Ly, == {(i,h) € L : 1 € I} for each h € H. Then the following statements
are true:

(i) {({Kin: (i,h) € Ly} then ts uniformly recursively compact.

(ii) If the function F': H — N defined by F(h) := card Ly, for h € H is recursive, then {{J{K; :
(i,h) € Lp}then is uniformly recursively compact.

Proposition (i) follows immediately from Proposition and Proposition (i) and (iii).
Moreover, Proposition (ii) follows from Definition As a corollary of Proposition (i),
we obtain the following result.

Moreover, given the recursive compactness of X, the computability of functions is preserved under
a finite number of operations among additions and multiplications. We summarize this property in
the following result (cf. [We00, Corollary 4.3.4]; see also [He25, Proposition 3.26]).

Proposition 3.21. Let (X, p, S) be a computable metric space in which X is recursively compact,
and H be a nonempty recursively enumerable set. Assume that {f;}icr (resp. {gnthen) is a sequence
of uniformly computable functions fi: X — R (resp. gn: X — R). Then {fi + gn}tunerxua, {fi-
In}perxm are two sequences of uniformly computable functions.

Next, we recall the definition of recursively precompact metric space.
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Definition 3.22 (Recursively precompact metric space). Let (X, p, S) be a computable metric
space with § = {s;};en. Then (X, p, S) is called recursively precompact if there exists an algorithm
that, for each n € N, on input n, outputs a finite subset {r; : 1 < i < m} of N such that X =

U?il B(S"'N 27”)'

Finally, we record the following useful characterization of complete recursively precompact metric
spaces (see e.g. [GHR11], Proposition 4]).

Proposition 3.23. Let (X, p, S) be a computable metric space. Then X is recursively compact if and
only if (X, p) is complete and (X, p, S) is recursively precompact.

Computability of probability measures. Building upon the theory of computable functions and
recursively compact sets, we now discuss the computability of probability measures. We begin by
reviewing the computable structure on the measure space P(X) introduced in [HR09, Section 4]
(cf. [HRQ9, Proposition 4.1.3]; see also [He25, Proposition 3.29)).

Proposition 3.24. Let (X, p, S) be a computable metric space with S = {sy }nen. Assume that X is
recursively compact in (X, p, S). Then the following statements are true:

(i) There exists an enumeration Qs = {Vi}ren of the set of Borel probability measures that are
supported on finitely many points in {s, : n € N} and assign rational values to them such that
there exists an algorithm that, for each k € N, upon input k, outputs a sequence {nl}le of
integers and a sequence {ql}le of positive rational numbers satisfying that Zle q =1 and

Vk = D11 Qs -
(i) (P(X), W,, Qs) is also a computable metric space m which P(X) is recursively compact, where

W, is the Wasserstein—Kantorovich metric on P(X) (see (E))

Let (X, p, §) be a computable metric space and assume that X is recursively compact. We endow
the measure space P(X) with the computable structure (P(X), W,, Qs) given by Proposition

The computability of measures is then defined via Definition Specifically, a sequence {u;}ier
of measures in P(X) is a sequence of uniformly computable measures if it is uniformly computable
in (P(X), W,, Qs), and a single measure p € P(X) is a computable measure if the corresponding
constant sequence consisting of p is uniformly computable.

Finally, we prove an effective openness result by generalizing [Zi06, Theorem 18(d)] from Euclidean
spaces to certain computable metric spaces.

Proposition 3.25. Let (X, p, S) be a computable metric space, where X is recursively compact and
open balls are connected, and T: X — X be a computable function. Assume that I is a non-empty
recursively enumerable set, and that {U;};cr is a sequence of uniformly lower semi-computable open
sets with the property that T' is injective and open on U; for each i € I. Then {T'(U;)}ier is a sequence
of uniformly lower semi-computable open sets.

Proof. Let {gm}men be an effective enumeration of Qt and S = {s,}nen. Since X is recursively
compact, by Definition X is compact. Hence, the diameter diam,(X) of X is finite and X =
B(sl, 2 diam, (X )) Thus, by the hypotheses of Proposition X is connected.

First, we consider the case where there is a sequence {z;};c; of uniformly computable points and
a sequence {r;};cr of uniformly computable real numbers such that for each ¢ € I, we have z; € S,

€ QT U {0}, U; = B(xj,r;), and that T is injective on B(z;,7;). Then {fi}icr, given by fi(x) =
p(x,x;) —r; for all i € I and x € X, is a sequence of uniformly computable functions.

Write S; == (f;)1({0}), B; = B(a:z,rz) and A; == X \ B; for each i € I. Since {U;}ics is a
sequence of uniformly lower semi- computable open sets, by Proposition there exists a recursively
enumerable set £ C N x I such that {s, : (n,i) € E} = {s, : n € N} N U, for each i € I. Consider
an arbitrary (n,i) € E with S; # (). Since s, € U; and T are injective on B; = U; US;, we have that
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T(sn) ¢ T(S;). Note that X is compact. Then for each i € I, by the closeness of S; and the continuity
of T', we have that T'(S;) is compact. Hence, p(T'(s,),T(S;)) > 0.

Claim. Suppose ¢ € I. Then S; = ) is equivalent to X C U;. Moreover, if S; # (), then we have
T(U;) = U{B(T(sn), p(T(8r),T(S;))) : (n,i) € E}; otherwise T(U;) = X.

Proof of the claim. First, we consider ¢ € I with r; = 0. Then S; = {z;} and U; = (). Thus,
{n eN:(n,i) € E} = 0. Hence, T(U;) =0 = U{B(T(sn), p(T(51),T(S:))) : (n,3) € E}.

Now we consider i € I with r; € Q7. Then U; # (. Indeed, the equivalence between S; = () and
X C U; follows from the openness of U; and A;, the connectedness of X, and X = U; U S; U A;.

Then we assume that S; # 0 and prove that T(U;) = U{B(T(sn), ( (sn), T(Si))) : (n,i) € E}.
Denote By, ; = B(T'(sn), p(T(sn),T(S;))) for each n € N with (n,i) € E. Fix an arbitrary n € N
with (n,i) € E. Since T is continuous on X, T(Ei) is a closed set. Thus T(Ei) = T(Ei) )
T(U;) 2 9(T(U;)). Note that T is open on U; and U; is open. Then T'(U;) is also open. Thus,
AT(U;))NT(U;) = 0. Hence O(T(U;)) € T(S;). Moreover, by the hypotheses of Proposition
By, ; is connected. By construction, we have B, ; N T(S;) = @ Combined with o(T'(U;)) C T'(S;), this
implies that B, ; N (T (U;)) = 0. By s, € U;, we have T'(s,,) € B,,; NT(U;). By the connectedness of
By, i, it follows from B,,; N O(T(U;)) = 0 that B,,; C T(U;).

Now we establish that for each = € Uj;, there exists n € N with T'(z) € B, ;. Since T'(U;) is open and
T(z) € T(U;), there exists 19 > 0 with B(T(x),r¢) C T(U;). Note that T is injective on B; = U; U S;.
Then T(U;) N T(S;) = 0, and thus, B(T'(z),r0) NT(S;) = 0. Since {s, : n € N} is dense in X, and
{sn : (n,i) € E} = {sp, : n € N} N U;, it follows from the openness of U; that {s, : (n,i) € E}
is dense in U;. Hence, since T is injective and open on U;, {T'(sy) : (n,i) € E} is dense in T'(Uj;).
Thus, there exists m € N such that (m,i) € E and p(T'(s;),T(x)) < ro/2. Hence, we obtain that
T(x) € B(T(sm),710/2) € B(T(z),70). Then we argue that p(T'(sm),T(S;)) = r0/2 by contradiction.
Otherwise, we have T'(S;) N B(T'(sm),70/2) # 0, which leads to a contradiction, since B(T'(x),r) N
T(S;) = 0 and B(T(sm),r0/2) € B(T(x),r9). So far we have shown that p(T'(s,,),T(Si)) = ro/2.
Thus, by the definition of By, ;, we have T'(z) € B(T'(Sm),70/2) € Bm,i-

Finally, we assume that S; = (). Since T is continuous on X and U; = B; is compact, T (U;) is also
compact. Hence, since T'(U;) is open, by the connectedness of X, we obtain T'(U;) = X. We have
completed the proof of the claim.

Now we prove the original statement. By Definition R~ {0} is a lower semi—computable open
set. Hence, since { fi}ier is a sequence of uniformly computable functions, by Proposition we
obtain that { i) YR~ {0}) } ¢ 1s a sequence of uniformly lower semi-computable open Sets in X.
Combining this with Proposition [3.19| (iii) and the fact that S; = X ~ (f;)"1(R\ {0}), we obtain that
{Si }ier is a sequence of uniformly recursively compact sets. By Proposition[3.19](v), it follows from the
computability of T" that {T'(S;) }ier is a sequence of uniformly recursively compact sets. Since {sy, }nen
is a sequence of uniformly computable points, by Definitions and {T (sn) }nen is a sequence of
uniformly computable points. Hence, {Uy m }nmen is a sequence of uniformly lower semi-computable
open sets, where Uy, , = {z € X : p(x,T(sp)) > qm} for all n,m € N. By Proposition there
exists an algorithm A(n, m, i) which for all n,m € N, and ¢ € I, on input n, m, and 4, halts if and only
it T'(S;) C Upm.

Define the set L C N2 x I by L = {(n,m,i) € N2x1: (n,i) € E, and A(n,m,1) halts}. By
Definition we obtain that L is a recursively enumerable set. Note that {T'(sy)}nen is a sequence
of uniformly computable points and that {g,, }men is an effective enumeration of Q. Then by Propo-
sition {B(T(sn),qm) : (n,m,i) € L} is a sequence of uniformly lower semi-computable open sets.
Thus, it follows from Proposition that {V;}ier is a sequence of uniformly lower semi-computable
open sets, where V; = |J{B(T'(sn),qm) : (n,m,i) € L} for each i € I.

Next, we apply the claim to show that V; = T'(U;) for each ¢ € I. Indeed, by the definition of
{Un,m}nmen, A(n,m,i) halts if and only if p(T'(S;),T(sp)) > ¢m for all n,m € N and ¢ € I. Now
we consider ¢ € I with S; # (). Then by the definition of {V;};c; and {Bn,i}(n,z‘)e g, it follows from
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the claim that V; = (J{B(T'(sn), qm) : (n,m,i) € L} = U, 00ep U{B(T(sn), @m) : A(n,m, i) halts} =
U(n,i)EE By, = T(U;). We turn to consider ¢ € I with S; = (). Thus, T'(S;) C Upm, namely, A(n,m, 1)
halts for all n,m € N. Hence, by the definition of {V;};c; and diam,(X) < +o0, it follows from the
claim that V; = ({B(T(sn),qm) : (n,m,1) € L} = U{B(T(sn),qm) : n,m € N, and (n,i) € E} =
X =TUy).

Thus, {T(U;) }ier is a sequence of uniformly lower semi-computable open sets.

Finally, we establish the general case. Let {D,,},en be an effective enumeration of extended ideal
balls in (X, p, ). Hence, there exist three recursive functions f: N - N, u: N - N, and v: N - N
such that D, = B (sf(n), ug&;l) for each n € N. Since {U,};cs is a sequence of uniformly lower
semi-computable open sets, by Definition there exists a recursive function g: N x I — N such
that U; = UneN Dy ) for each ¢ € I. Now we define xy, p, ; = 51(g(nyi)) and 1y i = %
for all n,m € N, and i € I. Then {@y m i}nmen,icr i a sequence of uniformly computable points
and {7pn.m.itnmeN,icr is a sequence of uniformly computable real numbers. Note that x, ,; € S and
Tnmi € QT U{0}. By the hypotheses in Proposition T is injective and open on U; for each
i € I. Then T is injective on B(Zn m,is nm,i) and T is open on B(Zn m.is Tnm,i) for all n,m € N, and
i € I. Hence, by the discussion in the first case above, we obtain that {T(B(Znm.i; "nm.i)) }nmeNicr
is a sequence of uniformly lower semi-computable open sets. Note that by the constructions, we have
T(Ui) = Upen T(Dyniy) = Un.men T(B(Znm.is Tn.m.i)) for each i € I. Therefore, by Proposition
{T'(U;) }ier is a sequence of uniformly lower semi-computable open sets. O

3.2. Thermodynamic formalism. We review basic concepts from ergodic theory. For more detailed
discussions, we refer the reader to [Wa82| Section 4].

Let (X, B, i) be a probability space. A partition & = {Ap, : h € H} of (X, B, i) is a disjoint collection
of elements of B whose union is X, where H is a countable index set. For each pair of partitions
E={Ap:he H}andn={B;:1l € L}of X, their join is the partition {Vn = {A,NB;: h € H, | € L}.

Assume that T: X — X is a measure-preserving transformation of (X, 5, ). Consider a partition
§={A,:h e H}of X. For each n € N, T7"(£) denotes the partition {T"'(A4;) : h € H}, and &
denotes the join VT (&) V- - - VT =1 (¢). The entropy of & is H,(€) == — Y onem (Ap) log(p(Ay)) €
[0, +00], where 0log0 is defined to be zero. One can show that if H,({) < +oo, then ngrfoo H,(&})/n

exists (see e.g. [Wa82, Chapter 4]). We denote this limit by h,(T,&) and call it the measure-theoretic
entropy of T relative to £&. The measure-theoretic entropy of T for u is defined as

hu(T) := sup{h,(T,§) : £ is a partition of X with H,(§) < 4o0}. (3.1)

We now introduce thermodynamic formalism, a particular branch of ergodic theory. The main ob-
jects of study are the topological pressure and equilibrium states (see e.g. [PU10, [Wa&2]; for the general
Borel-measurable setting used in Approach 11, see e.g. [IT10, Definition 1.1], [DeT17, Section 2.3], and
[DoT23, Chapter 1.4]).

Let (X, p) be a compact metric space, T: X — X be a Borel-measurable transformation such that
M(X,T) # 0, and ¢: X — [—o00,+00] be a Borel function. Then the topological pressure of the
potential ¢ with respect to the transformation 7" is given by

P(T,¢) = sup{hu(T) + (u,®) : p € M(X,T) and (, ¢) > —o0}. (3.2)

A measure p € M(X,T) that attains the supremum in is called an equilibrium state for the
transformation 7" and the potential ¢. Denote the set of all such measures by £(T', ¢). In particular,
when the potential ¢ is the constant function 0, we denote hiop(T') := P(T',0) and say that a measure
uw e M(X,T) is a measure of maximal entropy of T if u € E(T,0).
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4. PROOF OF MAIN RESULTS

4.1. Cones and projective metrics. First, we introduce some notations in the cone technique. Let
E be a vector space over R. A convexr cone in E is a subset C C E ~ {0} satisfying the following
properties:

(i) tu € C for all u € C and t > 0.
(ii) Au+nv € C for all u, v € C and A, n > 0.
(iii) {u€e E:ueC, —ueC} ={0}.
Here C is the set consisting of u € E satisfying that there exists v € C and {t,}nen € R satisfying

that u + t,v € C for each n € N and that ¢,, converges to 0 as n tends to +oc.
Let C be a convex cone. For each pair of u,v € C, we define

A(u,v) =sup{t >0: v—tu € C} and B(u,v) :=inf{s > 0: su—v € C},

with the convention sup () = 0 and inf ) = +o00, where () denotes the empty set. We have that A(u,v)
is finite, B(u,v) is positive and A(u,v) < B(u,v) for all u,v € C. Define

O(u, v) = log (iéz Z;) ’

with ©(u,v) possibly infinity in the case A(u,v) = 0 or B(u,v) = +oco. Note that O(u,v) is well-
defined and takes values in [0, +o0]. Since ©(u,v) = 0 if and only if u = tv for some ¢ > 0, © defines
a pseudo-metric on C. In this way, © induces a metric on a projective quotient space of C called the
projective metric of C.

Let Eq, Es be vector spaces over R, if L: E1 — FE» is a linear operator, and Cq,Cy are convex cones
in Fy, B9, respectively, such that L(Cy) C Ca, then O9(L(u), L(v)) < ©1(u,v) for all u,v € Cy, where
O, and O, are the projective metrics in C; and Co, respectively.

In general, L need not be a strict contraction, that will be the case for instance if L(C;) had finite
diameter in Co according to the next result.

Proposition 4.1. Let C; (resp. C2) be a convex cone in a vector space Ey (resp. Es) with the projective
metric ©1 (resp. ©3), and L: Ey — Es be a linear operator with L(C1) C Co. Assume that A =
diame, (L(C1)) < +o0, then

O2(L(u), L(v)) < (1— e*A) - O1(u,v)  for all u, v € C;.

The Ruelle-Perron-Frobenius operator £ associated to f: M — M and ¢ : M — R is the linear
operator defined by

L(u)(x) = Z u(y) exp(¢(y)) foruw e C(M) and z € M. (4.1)
yef~1(x)

Now we summarize Lemmas 4.1, 6.5, and Theorem B in [VV10] here in our context.

Theorem 4.2. Under the Assumptions and the Additional Assumptions, there exists v € P(X) with
() = exp(Pf,6)) - v.

Given o € (0,1) and 6 > 0, we say that a function u : M — R is (C, a)-Hdélder continuous in balls
of radius 0 if there exists C' > 0 satisfying that

lu(z) —u(y)| < Cd(x,y)* for all z, y € M with d(z,y) < d. (4.2)
Denote by |u|q,s the smallest constant C' satisfying (4.2).

Lemma 4.3. There exists a computable function F: (1,400) x (0,1) — R such that for each 6 > 0, if
u: M — R is (C,«)-Holder continuous in balls of radius 9§, then u is (C(F (I, «)), a)-Hélder continuous
in balls of radius 0. In particular, |ulqis < F(I, a)|u|qs-
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Remark 4.4. It follows from [CVI3, Lemma 3.5] that the above result holds in the case where
F(l,a)=1+(—-1)*1€(1,2), and a > 0.

For all a € (0,1), 6 > 0, and k > 0, we define
Cosi = {u €eC(M):u>0and |u|os < k- inf u(x)} (4.3)
zeM

For the cone C, 5 1, an explicit expression of its projective metric O, s is given in the following lemma
(see [CVI3 Lemma 4.2]).

Lemma 4.5. For all a € (0,1), § >0, and k > 0, we have

B Bo s (u,v)
C"')OL’(S’]C(U,’U) = log(fw/,(u’fu) for all u, v S Ca,&k,
e (2,9)0(2) — (v() = v(y))
. kd(z,y)*(z) — (v(z) — v(y
Apsk(u,v) = inf
)= 3B sent (. )7u(z) — (u(2) — u(y))
and

kd(z,y)*v(z) — (v(x) —
Ba U,v) = su
Sk (1, v) doyotent kd(@, y)u(z) — (

<
—~
8
~
|
e le
—~~
<
N

In particular, we have

osstn) < {5}t Busuten > mpd S5
m—1

Proposition 4.6. Given « € (0,1) and k > 0. Suppose 6 > 0 and that there exists a sequence {x;};"
of points in M such that | JI"7" B(x:,0/3) = M. Then we have

sup u(z) < (14+m- k- diam(M)®) - inf u(z) for each u € Co k.
zeM zeM

Proof. By u € Cq 5, we have |ulqs < k- infyepr u(x). Since M is compact, there exist two points y
and z in M with u(y) = sup,epr u(x) and u(z) = infyeps u(z). Now we define a graph G = (V, E) by
V=A{zr;:1<i<m-—1} and E = {(zj,x) : 1 <i,k <m—1 and d(z;,z;) < d}. It follows from the
connectedness of M and U:’:ll B(z;,6/3) = M that G is a connected graph. Hence, there exists an
integer 2 < s < m + 1 and a sequence {py};_, of points such that p; =y, ps = 2, and d(pg, pr+1) <9
for each integer 1 < k < s — 1. Thus, we obtain that

s—1 s—1
u(y) — u(2)] <Y _Ju(prsr) = w(r)] < Julas - d(prs pr1)® < (s = 1)ula,s - [diam(M)]* .
k=1 k=1

Therefore, we have

sup u(z) < inf w(x)+ (s — 1)|ulq,s - diam(M)® < inf u(z)(1+m- k- diam(M)®).
zeM zeM zeM

Next, we show that for each A € (0, 1), the cone Cq 511 has a finite O s ;-diameter.

Proposition 4.7. Given a € (0,1), § >0, k > 0, and X € (0,1). Then Cosxk C Cask. Moreover,
assume that there exists a family of (m — 1) balls of radius 0/3 that covers M. Then we have

diam@%&k (Ca,é,)\k:) < A(a, 0,k N), (4.4)
where
(4.5)

L me- Xk - diam(M)™ + A
Ala, 6,k ) ::210g( tm iam(M)” + )

1-A
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Proof. By (4.3) and X € (0,1), we have Co sk C Cak- Let u,v € Cosn6- By Lemma we have

O (1, ) < log (k -Sup,ep V(@) + A -k -infaep v(z) K -supyepru(z) + Ak - infoey u(x)) .

k-infieprv(x) — A -k-infyeprv(z)  k-infpepru(x) — A - k- infoepnr u(x)
Combining this with Proposition 4.6 we obtain that

(I4+m-X-k-diam(M)* 4+ \) infepns u(z)
(1 = N)infyenr u(x)
(I4+m-X-k-diam(M)* 4+ N infep v(x)

Oa,6.k(u,v) < log

1
+og (1= ) infocnr o(2)
<2log<1+m-)\-k1-ihim(M) +/\> A b k),

0

Theorem 4.8. Given o € (0,1), and § > 0. Under the Assumptions and the Additional Assumptions,
we have L(Cq5%) € Ca sk for each k> (m - diam(M)®)~1, where

((deg(f) = g)o™™ + qL*F(L, )) - exp(ey)
deg(f)

Proof. Take u € C, 5 and check that £(u) € Cqy 52, Indeed, by (4.3]), we have for each z € M,

A=

+ 2mL% - diam(M)“. (4.6)

Lu)(z)= > u(y)exp(d(y)) > deg(f) - inf u(z)-exp(inf ¢(z)) > 0. (4.7)

zeM zeM
yef~1(z)

Thus, it suffices to show that L(u) € C(M) and |L(u)|a,s < Akinf,cpr(L(u)(2)).

Now we consider an arbitrary pair of distinct points x, y € M with d(z,y) < 0. Since 4 is acceptable,

there exists a sequence {(x;, yi)}?f’;(f ) of pairs of paired preimages associated to x and y satisfying

that

d(xwyl) 0_17 1 < { < deg(f) —q . .
Awy) < {L, stherwise for each integer 1 < i < deg(f). (4.8)
One can see that
deg(f)
1L(u)(z) — L)) < D [ules) exp(d(x:)) — ulyi) exp((yi))]
i=1
deg(f)—q
< 3 Jula) - uly)llexp(é(z:))] (4.9)
i=1
deg(f)
+ D [ulw) — ulw)llexp(¢(xi))] (4.10)
i=deg(f)—g+1
deg(f)
+ ) July)llexp(é(i)) — exp(p(yi))l- (4.11)
i=1

Now we estimate (4.9), (4.10)), and (4.11)), respectively.
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For (4.9): By (4.8), we have d(z;,v;) < o~ 'd(x,y) < d for each integer 1 < i < deg(f) — ¢. Hence,
since u € Co g and sup ¢ ¢(2) — inf.ens ¢(2) < g4, by (4.3), we obtain that

deg(f)—q

@9 <exp(sup o)) (3 lulas - dlosoni)

=1
< (deg(f) —q) - eXp(SS}} $(2)) - |ulas -0 - d(z,y)*

< (deg(f) —q) - exp(ey) -exp(inf ¢(2)) - k- inf w(z) 07" d(w,y)"
= (deg(f) = q)o - exp(eg) - k- inf u(2)- exp(lnf ¢(2)) - d(z,y)".

For (4.10): By (4.8), we have d(z;,y;) < Ld(z,y) < Lo for each integer deg(f) —q+1 < i < deg(f).
Hence, since u € Cq 51 and sup, ¢y ¢(z) — infenr ¢(2) < €4, by (4.3) and Lemma we obtaln that

deg(f)
EI0 < exp(sup o) (> lulass- dlain)”)

(4.12)

€M i=deg(f)—q+1
<q- eXp(Sup ¢(Z)) ’ F(L7 Oé) : |u|oc,6 L d(.l?, y)a (413)
zeM

<a- c i LY a

< q-exp(eg) - exp( mf ¢(2)) - F(L,a) - k Zlélj\f/[ u(z) - LY - d(x,y)

=qL°F(L,«) -exp(%) k- mAf/[ u(z) - exp( mf ¢( ) - d(z, y)°.

zZEe

For (4.11): By (4.8) and o~ < 1 < L, we have d(z;,y;) < Ld(z,y) for each integer 1 < deg(f)

Hence, since u € Cogsp, k = (m - diam(M)*)™1, and |exp(d)|o < e4exp(inf.enr ¢(2)), by and
Proposition [£.6] we obtain that

deg(f)
< Séllpwu(z)' ( > |eXP(¢)|a'd($i,yi)a>‘

=1

< deg(f) " Sup u(z) - lexp(@)]a - L - d(z, y)* (4.14)

<deg(f)- (L +m-k-diam(M)®) - inf u(z) - €4 - exp( inf ¢(z)) L% - d(x,y)”

zeM
< 2mdeg(f)L%y - diam(M)* - k - inj\f4u( z) - exp(mf (;5( )) d(z,y)*.
ze
Thus, by (4.12)), (4.13), (4.14), and (4.6), we obtain that

|L£(u)(x) — L(u)(y)|
k-inf,epu(z) - exp(infzeM ¢(Z)) ~d(z,y)”

<((deg(f) —@)o ™ + gL F(L,)) - exp(e,)

+ 2mdeg(f)L% - diam(M)* = Adeg(f).
Combined with , this implies that
[L(u)(z) = L)) _ |£(u)(z) — L(u)(y)]
inf.cpr(L(u)(2)) - d(z,y)* deg(f) - inf,cpr u(z) -exp(infzeM (b(z)) ~d(z,y)®
Therefore, we obtain that L(u) € C(M) and |L(u)|a,s < Akinfep (L£(u)(2)). O

< Ak.

Theorem 4.9. Given o € (0,1), and § > 0. Under the Assumptions and the Additional Assumptions,
in addition we define Lo(u) = exp(—P (T, ¢))L(u) for eachw € C(M). Then the sequence {Ly(1)}nen
of functions converges to a function h such that Lo(h) = h and

1£57H(1) = hlloo < 3(1 + mAk - diam(M)) - (1 — exp(—A))" - A

—18(A) _where A = A(a, 5,k \).

for each k > (m - diam(M)®)~! and each integer n > Toa(—oxp(=A))
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Proof. Set hy,, == L{(1) for each n € Ny. By Theorem [4.8] we have L£(Cos5%) € Casrk- Hence, by
definition, we obtain that L£o(Cq 5x) C Cas2k and hy, € Co 5% for each n € N. Then by Proposition
for the operator Lo: Co 51 — Ca,s,k, it follows by induction that

Oab(hi h) < (1 —exp(=A))" - Oagp(hizn; li—n) < (1 —exp(=A))" - A (4.15)

for each n € N and each pair of i, [ € N with i, [l > n + 1.
By Theorem there exists v € P(X) with L;(v) = v. Hence, we have (v, h,) = (v,1) =1 for
each n € Ny. Thus, by Lemma we obtain that

o u(z) hi(z)
Aygsk(hi, hy) < inf <1< < B, hi, hy). 4.16
»57’4( l) zlélM{ hZ(Z) } jélp { hZ(Z) :5,]6( 7 l) ( )

for each pair of i, [ € Ng. moreover, for each n € Ny, by Proposition it follows from h,, € Cq s 2k
that

sup hp(z) < (1 4+ mAk - diam(M)?) - in]\f/[ hn(z) < 14+ mMAk - diam(M)“. (4.17)
zeM ze

Thus, by (4.1)), the operator Ly: C(M) — C(M) is continuous under the norm || - ||oo-
By (4.17)) and (4.15]), we obtain that

h

hi(z) — hi(2) < hi(z) - <hlEZ§ - 1> < (1 +mAk - diam(M)®) - (Basx(hi, hi) — 1)
il 2

(1 4+ mAk - diam(M)®) - (exp(Oa,s.k(hi, b)) — 1)

(1 4+ mAk - diam(M)?) - (exp((1 —exp(—A))" - A) — 1)

for each z € M, each n € N, and each pair of i, [ € N with i, [ > n+ 1. Then {hy, }nen, is a Cauchy

sequence in the norm ||-||s. Hence, {hy, }nen, converges to a function h € C'(M). Note that e*—1 < 3z

for each = € [0,1]. Then by (4.18]), it follows from the continuity of the operator Ly that Lo(h) = h
and

< (4.18)
<

|hnt1 — hlloo < (1 + mAk - diam(M)Y) - (exp((1 —exp(—A))" - A) —1)
3(1 +mAk - diam(M)?) - (1 —exp(—A))" - A

—log(A
log(1—exp(—A))* ]

<
<

for each integer n >

4.2. Computability of the equilibrium state. In this section we prove the computability of the
equilibrium state iy 4 associated to the map f and the potential ¢ satisfying the Assumptions and
the Additional Assumptions.

Before the proof of this theorem, we shall do some preparations. We begin with designing an
algorithm that computes the preimages of f.

Proposition 4.10. Let (M, d, S) be a computable metric space in which M is recursively compact.
Then there exists an algorithm that satisfies the following property:

For each M, f(x), r(x) satisfying items (i) to (iii) in the Assumptions, each xg € M, each oracle
7: N = N for zg, and each t € N, this algorithm outputs {yi}?igl(f) satisfying that there exists a
corresponding enumeration {z; : 1 < i < deg(f)} of f~1({mo}) such that d(x;,y;) < 27 for each
integer 1 < i < deg(f), after inputting the following data in this algorithm:

(i) an algorithm computing the map f: M — M,
(ii) an algorithm computing the function r: M — RT,

(iii) the integers t and deg(f),

(iv) the oracle T.

As an immediate consequence of Proposition and the computability of the exponential function,
one gets the computability of the Ruelle-Perron—Frobenius operator in the following sense.
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Corollary 4.11. Let (M, d, S) be a computable metric space in which M is recursively compact. Then
there exists an algorithm that satisfies the following property:

For each M, f(x), r(z), ¢(x) satisfying items (i) to (iii) in the Assumptions and item (x) in the
Additional Assumptions, each xg € M, each oracle 7: N = N for xg, each s € N, and each t € N, this
algorithm outputs a rational 27 -approzimation for the value of L5(1)(xo), after inputting the following
data in this algorithm:

(i) an algorithm computing the map f: M — M,
(i

(iii

an algorithm computing the function ¢: M — R,

an algorithm computing the function r: M — RT,
(iv
(v

Now we establish the computability of the topological pressure.

the integers s, t, and deg(f),

)
)
)
)

the oracle T.

Lemma 4.12. Let (M, d, S) be a computable metric space in which M is recursively compact, where
S = {sn}nen. Then there exists an algorithm that satisfies the following property:

For each M, f(x), L(z), r(z), o, L, {U;}}—1, ¢, €4, ¢(z) satisfying the Assumptions and the Ad-
ditional Assumptions and each t € N, this algorithm outputs a rational 2t -approzimation for the
topological pressure P(f, @), after inputting the following data in this algorithm:

(i) an algorithm computing the map f: M — M,
(ii) an algorithm computing the function ¢: M — R,

(iii) an algorithm computing the function r: M — RT,

(iv) the integers t and deg(f).

Proof. We can design the algorithm following the steps below:

(1) Compute N € N with N > 2t+11og 2.
(2) Apply Corollary to compute and output the value of

v~ wy = N1 log(ﬁN(ﬂ)(sl))

with precision 27t71.
Let us verify that v; satisfies |v; — P(f,¢)| < 27 for each t € N. To see this, it suffices to check
that |w; — P(f,¢)| < 27t for each t € N.
We set the corresponding integer computed by step (1) to be N and k := (m - diam(M)*)~!. By
Theorem and item (ix) in the Additional Assumptions, it follows from 1 € C, 5 that Eév (1) €
Casx: € Cosk- By Theorem 4.2, we have <1/, Eév(]l)> = 1. Hence, by Proposition and k =

(m - diagl(M)"‘)_l, we obtain that
1/2 = (1 4+ mk - diam(M)*)~! < inj\f/l(ﬁév(]l)(z)) <1< sup (L) (1)(2)) < 1+ mk - diam(M)* = 2.
z€ zeM

Hence, we can conclude that
fwi = P(f,¢)] = [N "M log (™" EO LY (1)(s1))| = [N~ og (L5 (1))] < (log2)/N <2771 O

Recall that in Theorem[4.9] we can demonstrate that the existence of eigenfunction of the normalized
Ruelle-Perron-Frobenius operator.

Lemma 4.13. Let (M, d, S) be a computable metric space in which M is recursively compact, where
S = {sn}nen. Then there exists an algorithm that satisfies the following property:

For each M, f(x), L(x), r(z), o, L, {U;}—,, q, €4, ¢() satisfying the Assumptions and the Addi-
tional Assumptions, each xg € M and each oracle 7: N — N for xg, and each t € N, this algorithm
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outputs a rational 2~ -approzimation for the value of h(xo)EL after inputting the following data in this
algorithm:

(i) an algorithm computing the map f: M — M,
(ii) an algorithm computing the function ¢: M — R,

(iii) an algorithm computing the function r: M — R,

)
(iv) an algorithm computing o, L, and €4,
)

(v

(vi) the oracle T

the integers t, deg(f), and q.

Finally, we review [BHLS25, Theorem 5.10] in our context here.

Theorem 4.14. Let (X, p, S, {Xn}nen, {Tn}nen) be a uniformly computable system with X,, == X
for each n € N. Assume that there exist two recursively enumerable sets K, L with L C N x K and
a sequence {Yn,k}(n,k)eL of uniformly lower semi-computable open sets in (X, p, S) such that Yy, j, is
admissible for T,,, and X = U(n,k)ELn Y, ik, where L, == {(n,k) € L : k € K} for each n € N. Suppose
{bn}nen is a sequence of uniformly computable functions satisfying that Ey(Ty, én) = {un}. Moreover,
assume that {J,}nen is a sequence of uniformly lower semi-computable functions Jp: X — [0,+00)
satisfying the following properties:

(i) There exists a sequence {un}nen of continuous functions u,: X — R such that for each x € X,

In(x) = exp(P(Th, ¢n) — n(@) + un(Tn(x)) — un(x)).

(ii) Zﬁ %(y) =1 for each v € X.
ye(Tn) ()

Then {pin }nen is a sequence of uniformly computable measures.

Proof. By Lemma and Theorem [£.14] we obtain Theorem O
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